PHOPHECY (PRecise OPerations for High Efficiency Communication sYstems) Proposal
Published in The University of Texas at Austin, 2014
This document contains a proposal of a near-earth CubeSat mission to serve as a demonstration of high efficiency Laser Optical Communication using high precision Attitude, Determination, and Control (ADC) systems in order to meet the specific pointing accuracies required to operate in a free-space environment. The PRecision OPerations for High Efficiency Communication sYstems (PROPHECY) mission was created to demonstrate that high ADC accuracy and precision in swiftly developed, low-cost satellites can adequately meet the needs of future communications networks without significant detriment to mission budgets, be that time or monetary constraints. State-of-the-art Free-Space Optical Laser Communication (LaserCom) technologies will be used to analyze and quantify the specifications of the ADC system. LaserCom requires pointing accuracies on order of tens of arcseconds - equivalent to a few thousandths of a degree. Due to the multiple pitfalls of current Radio Frequency (RF) technologies (such as limited bandwidth, interference, large power losses, and bottlenecking of data) there is a need for a more efficient and powerful method of communication. LaserCom fulfills those needs - and then some. With no bandwidth limitations, virtually no interference in free-space applications, and 10 -100 times the data efficiency of current RF technologies - LaserCom has proven to be the ideal candidate. NASA intends to employ the Tracking and Data Relay Satellites (TDRS) with LaserCom upgrades for near-earth and atmospheric communications. Based on the NASA statement “The next generation in communications satellites will supply both [Radio Frequency (RF)] and optical services.” [Laser Comm Relay], the PROPHECY mission has been suggested in order to prove that CubeSats can become a viable alternative to larger satellites and provide the same level of communication support in near-Earth missions. Using the discoveries of the Laser Communication Relay Demonstration (LCRD), a mission designed to demonstrate the effectiveness of laser communication from the moon, PROPHECY aims to demonstrate and prove that CubeSats are capable of providing a standard LEO/GEO platform for future near-earth laser communication needs with quick development at low-costs. Lastly, as satellites become more prevalent in the use of everyday technology, the nature of the CubeSat as a rapidly-developed and easily replaceable satellite becomes more enticing. This mission stands to prove that highly efficient communication and data relay satellites can be produced and deployed on a short timeline, while maintaining the efficiency and efficacy of a the previously larger satellites. In summary, PROPHECY aims to prove the ability of CubeSats to act as reliable short-term satellites for Free-Space, high-atmosphere, and ground communications at a fraction of the production time and cost of current state-of-the-art communications satellites.