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ABSTRACT

The present study focuses on the implementation of an iterative targeting algorithm within a
Trick simulation environment. A team of undergraduate research students at The University of
Texas at Austin accomplished the investigation and software implementation. The simulation
developed seeks to identify the impulsive maneuver required by a spacecraft to transfer between
two arbitrary points in Earth orbit. The initial state and the terminal position vector are inputs to
the Trick simulation. Then, Trick’s built-in Monte Carlo master/slave framework is leveraged to
converge on the impulsive maneuver required for the spacecraft to initiate the transfer. The
spacecraft trajectory modeling is accomplished through Trick with simple, two-body, point mass
equations of motion.

The targeting algorithm relies on the availability of the state transition matrix (STM). To
facilitate a generalized force model and future JSC Engineering Orbital Dynamics (JEOD)
implementation, the STM is constructed with a finite differencing algorithm. Thus, the Trick
simulation developed in this report is divided into three routines: the physical simulation, the
finite differencing process, and the targeting process.

The physical simulation consists of a set of differential equations integrated with Trick. The
finite differencing process calculates the STM. Finally, the targeting process employs the STM
to identify the necessary changes in the initial state to achieve the desired end state. This work
builds on the results of a previous study of optimization in Trick and the Cannonball tutorial
provided with the Trick Documentation.

The body of this final report presents the objectives of this project, the mathematical
grounding of the algorithm, and discussion of the interaction between the various Trick source
and model files. Finally, the results are illustrated, along with some of the major obstacles
encountered in an attempt to integrate the targeter with JEOD. Suggestions are made for future
study of the interaction between the Monte Carlo framework and JEOD, and the implementation
of more advanced targeters in Trick.



1.0 INTRODUCTION

1.1 Motivation

The purpose of this study is to explore the implementation of an iterative targeting algorithm
using NASA’s simulation toolkit, Trick. This simple algorithm provides a springboard for
models of increased complexity, scope, and practical value. For further discussion on studies of

targeting for NASA's Orion project, and more advanced algorithms, see Marchand [1].

1.2 Goals

The two goals of this project are to implement, in Trick, a non-real time iterative targeter that
employs a Level 1 differential corrections process and to integrate the JSC Engineering Orbital
Dynamics (JEOD) package into the underlying trajectory simulation. Previous work explored the
implementation of an iterative Trick environment [2]. The present study expands the capabilities

and utility of this earlier environment.

Incorporation of JEOD will allow for a generalized algorithm of arbitrary dynamical
complexity. Initial work with JEOD focuses on learning C++, understanding the tool from an
operator’s perspective, running the Tutorial simulations, and becoming familiar with the package

as this is the first year of its use at UT.



2.0 BACKGROUND

2.1 Project Breakdown

The design of the Trick targeting algorithm entails three primary components: the targeting
process itself, the finite differencing process, and the trajectory modeling (either with a user
provided model or JEOD). The mathematical notions involved in targeting are outside the scope
of undergraduate studies. The same can be said about the notion of finite differencing for the
construction of numerical derivatives. Furthermore, working with JEOD required a certain level
of proficiency in C++. Accomplishing these three tasks required much self-education on all three
subjects. The following sections are devoted to summarizing how each of these three tasks were

studied and accomplished individually.

2.2 Targeting

In general, targeting is the process of iteratively changing control parameters in order to
achieve some pre-specified goal. The control parameters, in this case, are the three components
of an impulsive change in velocity executed at the beginning of a satellite's Earth orbit. The pre-
specified goal, in this case, is an end-state constraint on position. The targeting algorithm is
responsible for determining the impulsive maneuver required at the start of the trajectory in order
for the spacecraft to reach its intended destination. This section outlines the use of the Level 1

targeter presented in [1].
Let the inertial position and velocity vectors be defined as R(t) = [x(t) y(t) z(t)]" km and
V(t) = [x(t) y(t) z(t)]T km/s, respectively. The state vector, then, is defined as X(t) =

[R(t) V(t)]7, so that the state of the satellite at time t = 0 seconds is given by the following:



- i)

From the definition of the satellite state, the nonlinear differential equations that govern the

propagation of X(t) forward in time can be represented by
X(®) = fIX(@®]. 2
Any reference trajectory of interest, X*(t), must satisfy equation (2) such that
X = flx @] €)

The reference solution employed in this study is defined as the “current” solution. Thus, the
reference solution changes after each iteration of the algorithm, as each update is processed. The

nonlinear state of the satellite may then be defined relative to the reference path X*(t) by

X() =X"(t) + 6X(b), 4)

where 6X(t) is the state deviation measured relative to the reference path, X*(t). Linearizing

Equation (2) about the reference trajectory leads to

5X(t) = A()6X(D), (%)
where A(t) = % , the Jacobian, is evaluated along X*(t). Equation (5) admits a solution of the
form
6X(t) = D(t, t)6X (L) (6)

Here, ®(t, ty) is termed the state transition matrix (STM). The STM originates from the solution

to a matrix differential equation [3]:



D(t, ty) = A D(t, t,). (7)

Subject to an initial condition, ®(ty,t,) = I, where I is an identity matrix of the appropriate

dimensions.

The nonlinear relationship between the constraints and the control parameters in a targeting
process is formulated as ¢ = g(p), where ¢ denotes a vector of constraints and p is the vector of
control parameters. Along the reference trajectory, then, ¢* = g(p*). Thus, a linearization about
the reference trajectory suggests that ¢ = Mép, where M denotes some time varying matrix. If
the number of constraints is equal to the number of control parameters, then this equation admits
only one solution. If, however, the number of constraints is less than the number of control
parameters, it admits an infinite number of solutions. In this case, one commonly employed

solution is known as the minimum norm solution. That is, the solution that minimizes 6p:

5p = MT(MMT)~15c. (8)

The state relationship matrix, M, in this case, depends on the state transition matrix determined
either with (7), or the finite differencing formulation in section 2.3. For a derivation of equation
(8), see Bate [3] or Corless [4]. In equation (8), p represents a small change to the vector of
control parameters, which will subsequently inflict a small change on the value of the
constraints, §¢. In the initial algorithm considered, p = &v,, where dv, is the impulsive burn

at time t,. Also, dc represents the error in the terminal position vector:
Sc =1y — R(t;), 9)

where 74 is the desired final position and R(ty) is the actual terminal position of the spacecraft.

Figure 1 illustrates an example of these relationships similar to the enclosed implementation.



Figure 1: Visual representation of the targeting algorithm

Since the initial targeter considered is sufficiently simple, and B is a square matrix, it turns out

that
MT(MMT)™1 = B(t;, t) 7, (10)
where B is the top right 3x3 matrix of CD(tf, to):

_ A(tf,to) B(tfito) 11
d(tf, tp) = Cltpts) Dty to)| (11)



Thus, the final targeting equation is

v, = B716r. (12)

2.3 Finite Differencing

For the simple case of a satellite orbiting an inertially fixed Earth in the two-body point mass
problem, the Jacobian is easily constructed. This allows the integration of the STM with equation
(7). However, as the dynamical model becomes more complex, these partials are both difficult to
evaluate and cumbersome to determine. Furthermore, integrating JEOD into the targeting
process does not lend itself to the use of analytical partial derivatives. Constructing the STM
using finite differencing (FD) is an appealing option that simplifies the use of JEOD, or any
other "black box" physical model, in the targeting process. Finite differencing allows the
targeting algorithm to compute the STM without direct knowledge of the force model in equation
(2). The method employed here takes advantage of the fact that the STM is essentially a linear
sensitivity matrix. The process works in the following manner. First, specify a small perturbation

for each state:

5, 0 01

0 5, 0

1o 1o _10
8 = 0 , 0, = 0 8=, (13)

0 0 0

0 L( L5

The impact of each of these perturbations on the terminal state is considered individually. That
is, the initial state is perturbed first by §; and the impact on the terminal state is measured. Then,

the process is repeated for 6, through 8. Notice that each of these §;’s considers only a small

10



perturbation in one of the six states. The structure of each perturbation vector is important in

calculating the STM. The perturbed initial vectors look like this:

X1(tp) = X"(t,) + 84, ... Xe(t,) = X*(t,) + 86. (14)

Next, a 42 element state vector is constructed for numerical integration. This vector consists of
the reference trajectory, followed by the six perturbed trajectories,
X
_ X0
X(t) = | X2 ()| Xi = Xy (15)

6(t)
where j ranges from zero to six for the seven trajectory vectors and k indexes the elements in the

j vector. Once the integration is performed, the final state associated with each perturbed initial

state vector is available. Thus, the STM is approximated numerically as follows:

Ka(ty) - Xi(tr)  Xealty) = Xi(t)]
®(t7,t0) = Zi—(tf) = 551 5;6 (16)
G Ra(t) = Xelt)  Reolt) = Xe(ty)
| 51 56

Equation (16) can then be applied in conjunction with (11) and (12) to target the desired

constraint.

The finite differencing method employed relies on the assumption that the deviations in the

terminal state are in the “linear” range. Thus, the parameter §; must be carefully selected to

preserve this assumption. It is also true, however, that they should not be set too small because

this can introduce convergence difficulties. The accuracy of the presented STM approximation

11



will, of course, depend on the quality of the §;’s selected. The quality of this choice can, in a

simplified model, be validated against the numerically integrated state transition matrix.

2.4 Trajectory Simulation
The equations of motion used to propagate the trajectory for the initial, user defined, physical

model extend from the Ball++ code included with Trick [5]. They are in three dimensions and

assume two point mass bodies with the Earth inertially fixed. A flow chart of the code is depicted

in Figure 2. Each arrow denotes a step down to the next directory level of the code.

SIV_salks L1

L1 (FD) Optim++ (Targeting)
M_velocity_target

RUN_test/input

Data logging

Ball Ball.dd Optimization
Balllnit Ball.hh Optiminit Optimization.hh

S_define

BallDeriv Ball_integ.d Prelobs Optimization.dd
Ballinteg BallState.hh PostJobs

Figure 2: Code Structure for User Provided Equations of Motion

The Finite Differencing will take place in the L1 area of the code, while the Targeting resides
in Optim++. The Monte Carlo job which defines the interface between the two is in the
SIM Ball++ L1 directory. Specifically, the framework is declared in the S define file.

Next, a flow chart of the Monte Carlo optimization framework is shown in Figure 3.
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Master Starts Slave

-

Master Init Slave Init
/ \ Request Work / O \
Dispatch Send Work = Read Input
Data
Job Done
Record Report
Post-Run Send Resul
- Al — i
In Post-Run Job
& Master Looy \ Slave Looy

Slave Shutdown

Master Shutdown

Figure 3: Master Slave Framework for Optimization [5]

The goal is to wrap the targeting algorithm in the master loop around the slave which contains
either the Bal1l++ equations of motion or, for the second part of the project, the desired JEOD

model. Figure 4 shows the flow diagram of the JEOD code when integrating with the targeter.
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JEOD Optim++ (Targeting & FD) 5 ceffie
modeling M_velocity_target
directories SET_test/RUN_1/input

Data logging

Optimization
Optimlnit Optimization.hh

Prelobs Optimization.dd
PostJobs

Figure 4: Code Structure for JEOD Integration

Both the specifics of this framework and how the pieces operate in tandem will be further
developed in the following sections. For more information on the JEOD modeling directories,

see Jackson [6]. All of the code discussed in this section can be found in the Appendices.
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3.0 IMPLEMENTATION

3.1 Finite Differencing

First, as verification of the finite differencing process, the method for calculating CD(tf, to)
outlined in section 2.3 was implemented in MATLAB. It is assumed that the satellite is initially
on a circular orbit about the central body. The finite differencing computation agreed with the
matrix differential equation outlined in section 2.2 which was implemented by the Targeting
group.

This paved the way for the implementation of Finite Differencing in Trick. In the model
source directory, a method for calculating the STM was added. Also, the default ball integration
file was updated to allocate 42 integration variables and use the fourth order Runge-Kutta
method. Consequently, this required updating the satellite state objects to deal with multiple

trajectories instead of just one.

In the initialization phase of the code, the initial conditions and perturbations are stored from
the appropriate default data file. The three-dimensional equations of motion are coded into the
derivative class, while interfacing with the Trick Runge-Kutta 4 integration method is taken care

of in the integration class.

3.2 Targeting

The targeting algorithm defined by equation (12), and the framework to support it, was coded
into MATLAB. This allowed for a quick check of the algorithms functionality as well as

providing a proving ground to learn the basic elements of a targeting algorithm.
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The targeting algorithm was then transitioned into the optimization framework. Previously,
the pre-run jobs in the master loop had incremented a ball "jet" firing time with no decision-

making capacity except to terminate the program when a firing time reached some upper limit.

To implement the targeting algorithm, the bulk of the calculations are placed in the post jobs
section of the master function found in OptimPostJobs.cpp. After the slave has returned,
the STM is calculated with a call to the finite differencing function. This left the pre-master the
simple task of checking stopping conditions, updating the initial conditions to match the new

initial velocity, and passing that information along to the slave simulation.

The targeting team then looked into other, slightly more advanced, targeting algorithms based
on equation (8). The first was a time free position-targeting algorithm. The second was a time
free altitude-targeting algorithm. The final was a two impulse position-targeting algorithm. Of
these, the first two were successful. The third, however, had issues with convergence and is still

under investigation.

While a time free MATLAB targeter was successfully implemented, some difficulties were
encountered when attempting to implement the same algorithm in Trick. After some
investigation, it was determined that the stop time from the RUN test/input file is stored in
sys.exec.work.terminate time field through the input processor. However, when the
termination time was modified in the master object, the integration time for the slave object did
not change. As this investigation occurred late in the project, and it is still unresolved, this task

was left as an item for future work.
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3.3 JEOD

The JEOD sample simulations were successfully executed and used as training material
during this investigation. A comparison of the plots generated for a Low Earth Orbit by the

simple gravity JEOD model in Tutorial SIM 1 vs. the user defined EOM is shown in Figure 5.

Ball++ EOM JEOD model
o 7e=06
60 — - 606 —
50003 . 506
2003 - - 406 -
3 - ; 7 N
3 / \
30003 3e06 :
2000 F—rt - 206 \
El \
1000 106 T
— ] | |
E E E 0 | |
= E = [ ]
3 i \ |
-1000 3 -1e+06 +
2000 34— - 26406
<3000 3 - 36206
3 \\ /
F \ /
000 3 e+06 -
<00 -5e+06
5000 : — — -6e~06 ~ —
7000 -1 = T T T T T T -Te+06 3 T T T T T T T
e A0 2000 o 2000 00 00 6e-06 4206 -2e+06 0 e+06 406 6e—06
x(km) x(m)

Figure 5: LEO comparison with JEOD

It is seen that both produce the same plot, with JEOD using meters whereas the user coded

simulation used km.
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4.0 INTEGRATION

4.1 FD to Targeting

The most important part of the integration is passing the slave object to the master object in
the simulation. This allows for the modification of the ball input state in the pre-master and gives

the optimizer access to the STM calculation method.

Trick Executive

] Monte Carlo
Master
Prelobs
(End Condition) Slave
Input Files — (EOM)
(Finite Differencing)
Postlobs
(Targeting)
|

Figure 6: Depiction of the targeter for a user defined model

In Figure 6, the pre-master passes the 42 element vector to the slave for integration and

receives the integrated final state in the post master.

4.2 Targeting to JEOD

There are two main components associated with the integration effort with JEOD. The first is

modifying the existing Tutorial's S define file to include Monte Carlo framework. The

18



second is dealing with the JEOD as a "black box" physical model to be used without

modification.

Adapting the simulation definition to function with the targeter proved relatively easy, as the
structure of the targeting object could be copied from the user defined case. Since the targeter
needs to modify the satellite state through each iteration, it was determined that sv_dyn should

be passed to the master since this contains the JEOD vehicle state information.

To keep the targeter separate from the model, the STM calculator was moved from the slave
to the master. JEOD is not designed to propagate a 42 element vector. Thus, a modified method
for calculating the STM had to be developed. The proposed method still relies on the creation of
a 42 element state vector; however, it takes seven calls to the slave instead of one to build up the

necessary perturbation information. This is shown in the following graphic.

switch (counter%7)

case O:
--Apply delta v to initial state in pre master
--Store reference trajectory final state in post
master
—-—-counter++

case 1:

--Apply perturbation to the first element of the
state vector in the pre master

—--Store the output state for the perturbed
trajectory in the post master

—-—-counter++

case 6:
--Apply perturbation to the sixth element of the
state vector in the pre master
—--Store the output state, calculate the STM and
apply targeting formula for a new delta v
—-—-counter++

19



Ideally, no JEOD code needs to change to interface with the targeting algorithm. Moreover, if
each simulation is using the same satellite object name, the optimization loop could be copied
into each SIM to produce a targeter since they all draw from the same file structure. Figure 7

shows the independence of the targeting algorithm and the JEOD simulation.

Trick Executive

Monte Carlo

V

Master

Prelobs
(End Condition)

Slave

Input Files —
(JEOD)

PostJobs
(Targeting)
(Finite Differencing)

Figure 7: Depiction of the targeter when using JEOD

The information passed to the slave from the pre-master is the initial conditions for the

desired trajectory integration. The post master receives the integrated final state from the slave.
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5.0 RESULTS

5.1 Targeting

To begin, we verified the Trick targeter with the MATLAB targeter. For an initial state of

R(t,)" =[0,42000,0](km), V(t,)" =[0,3.5,0](km/s), both targeters computed AVT =
[—0.667,0.282,0](km/s) to reach R(tf)Tz[SOOOO,O,O](km). We also checked the

intermediate targeting curves of both programs and found that they were in agreement. The

output from a successful Trick targeting simulation is displayed in Figures 8 and 9.
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Figure 8: The first part of the output for a successful simulation run
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Figure 9: The change in velocity computed by the targeting algorithm
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To plot the Trick Monte Carlo output curves, the four Monte Carlo output run directories are

selected in the trick dp utility, shown in Figure 10.

% trick_dp E]@

Session Sims/Runs Data Product Settings Actions Help

DDATER B BEDA B trickes

Sims / Runs | =1 Mome/kjb722itempitrick2010
=17 Mome/kjh722{temp/trick2010 = SIM_Ball++_L1/DP_Product
(=} SIM_Ball++_L1 [] DP_ball_force
=47 MONTE_RUN_test (] DP_ball_states
N RUN_00000 [] DP_mem_stats

B RUN_00001 (] DP_position
- B RUN_00002 (] DP_rt_frame
B RUN_00003 (] DP_rt_itimer

[ RUN_test [] DP_rt_jobs
-] homefkjh722{TargetingAlgorithms [] DP_rt_timeline
@4 home/kjb7221trick2010 =7 hhome/kjh722{TargetingAlgorithms
[+ homefkjh722trick_sims = Momefkjh722{trick2010

=7 home/kjh722ftrick_sims
=17 homefkjh722{temp/trick2010/SIM_Ball++_L1
=7 MONTE_RUN_test/DP_Product

SIM_Ball++_L1/MONTE_RUN_test/RUN_0I

(] SIM_Ball++_L1/MONTE_RUN_test/RUN_0(
| =
| SIM_Ball++_L1/MONTE_RUN test/RUN 0.

Start -1.0e20 Stop|1.0e20 Freq [ Tolerance | 1.0e-3

Figure 10: Screenshot selecting the four Monte Carlo run output directories in trick_dp

Note that the desired plot trajectories are stored in the first row of the output position matrix,
as this is the reference trajectory for each run. This allows for the generation of a plot of the y

position vs. the x position in Figure 11.
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=& Jtmp/DP_kjb722 - qp Q@|®

File Vars Runs Plots Tables Programs Settings Actions Help

pEE|00AFRR A

Search

trickes;

~Vars & Runs i

ball.obj.state.output.r[0][0] (km) Y| |

ball.obj.state.output.r[0][1] (km)
ball.obj.state.output.r[0][2] (km)
sys.exec.out.alloc_stats.alloc_current (--
sys.exec.out.alloc_stats.alloc_max (--)
sys.exec.out.alloc_stats.alloc_total (--)
sys.exec.out.alloc_stats.num_alloc_currel
sys.exec.out.alloc_stats.num_alloc_max |
sys.exec.out.alloc_stats.num_alloc_total
sys.exec.out.amf_wait_time (s)
sys.exec.out.child_complete_wsait_time (s
sys.exec.out.child_start_wait_time (s)
sys.exec.out.data_rec_time (s)
sys.exec.out.depends_on_wait_time (s)
sys.exec.out.frame_job_time[0-2] (s)
sys.exec.out.frame_overrun_time (s)
sys.exec.out.frame_sched_time (s)
sys.exec.out.frame_sched_times[l1-1] (s)
sys.exec.out.master_sync_time (s)
sys.exec.out.slave_sync_time (s)

q [

ome/kjh722/tempitrick2010/SIM_Ball++_L1.
ome/kjh722/temp/trick2010/SIM_Ball++_L1.
ome/kjh722/temp/trick2010/SIM_Ball++_L1.
ome/kjh722/temp/trick2010/SIM_Ball++_L1.

I I

> Plots
= Page
ball.obj.state.output.r[0][0]
ball.obj.state.output.r[0][1]
7 Tables
> Programs

Page Plot | Xvar | v Var | Table | Table Var | Program | In | Out |

Title

Start

Stop

Max Points

X Axis Label
X Axis Scaling
X Min Range
X Max Range
Y Axis Label
Y Axis Format
Y Axis Scaling
¥ Min Range
Y Max Range

Level 1 Differential Position Corrector

Start|-1.0e20 Stop|1.0e20 Freq|0.0

Figure 11: Screenshot plotting the x and y components of the reference position data log for each Monte run

The plot for the gp job in Figure 11 is shown in Figure 12. Figure 13 is a plot from MATLAB

which verifies the Trick output trajectories.
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Page

Level 1 Differential Position Corrector

50000

45000

40000

35000
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Figure 12: Trick targeting curves
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Level 1 Differential Position Corrector

Figure 13: MATLAB targeting curves

One can see that both targeters successfully converge to the desired final location in four

iterations.
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5.2JEOD

The team successfully created an optimization object in the modified S define file and
produced the correct trajectory for the first reference state. Comparison of the output for the first

iteration in Figure 8 with the output in Figure 14 shows that both final states are the same.

Figure 14: JEOD Targeter Output
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However, a memory error occurred when the Monte Carlo framework attempted to perform

the master loop iteration.

Figure 15: Memory Error for JEOD integration

Apparently, simple 6dof dyn body.cc attempted to delete one of its objects but the
optimization framework did not allow it. Commenting out all deletions in the
Simple6DofDynBody destructor successfully eliminated the address error but did not get rid

of the segmentation fault.

There are some important points to make about the output in Figure 14. First, the printouts
from the pre and post masters let the user know that the Monte Carlo job is indeed functioning
correctly. Also, the master has read the slave's results successfully, as indicated by the output in
the post master of the final state of the vehicle. Then, since the RETURN statement is printed to
the screen, the Monte Carlo framework leaves the post master without error. After the framework
leaves the post master however, it does not successfully loop back to the pre-master before the
failure of the simulation. Because of this, the address error and the segmentation fault appear to

occur in the background interaction between the Monte Carlo framework and JEOD.

Some solutions were investigated for working around the segmentation fault, but none proved
successful. Also, commenting out the memory error caused by the destructor is contrary to the
goal of leaving JEOD unmodified when integrating with the targeter. Due to the relative
inexperience with JEOD, the team struggled in determining an appropriate fix to the address

freeing issue without modifying the destructor.
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6.0 CONCLUSION

6.1 Discussion

A successful method for targeting a desired final position from an initial state has been
presented using the Trick optimization framework. This met the first goal of the project. The
caveat to this is that the satellite dynamical model was user specified and extremely simplified.
An attempt was made to implement more complex models provided by JEOD, but wrapping the
targeter around one of the Tutorial simulations proved unsuccessful. This means that the second
goal was not met. However, the attempt is documented for future study and discussion of the
proposed algorithm for interfacing a targeter with a "black box" physical model included. Also,
because of the presented errors, the switch statement method outlined in section 4.2 could not be
fully verified in run time. This study is not prepared to draw any final conclusions about the

compatibility of JEOD and the Monte Carlo framework.

6.2 Recommendations for Future Work

The targeting algorithm presents several avenues for future development, some of which have

been explored over the course of the semester.

First, the team has spent significant time working with the JEOD simulation tool. Steps have
been taken towards understanding the obstacles involved with integrating this tool into the
simulation portion of the targeting algorithm. A JEOD implementation would allow for the
exploration of trajectory perturbations such as multi-body dynamics, atmospheric drag, and solar
radiation pressure. Such an increase in fidelity would better the accuracy of results and improve

usefulness to the community.
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Considering the failure of this initial, simple targeting scheme, a feasibility analysis devoted
to the JEOD/Monte Carlo interaction is likely the next course of action. For a future feasibility
study, someone more familiar with JEOD will likely need to serve in a support role. This project
did not request such assistance because the issues were discovered at the very end of the

semester and time had run out to investigate further.

Second, the team has looked into developing a targeter which does not require a constant
simulation time. The model has been implemented in MATLAB but porting this code to Trick
requires further research. The ability to make the time a target variable might allow for
optimization of the initial impulse burn beyond the solutions suggested by the current

implementation.

Additionally, one of the strengths of Trick is its ability to act as a backbone of graphical or
real time human in the loop simulations. The targeter in its present form would not benefit from
the latter, but developing a visualization component, similar to those employed by STK and

Copernicus, would improve usability and the effectiveness of conveying results.

Lastly, in the process of further development, naming conventions of files and classes shall be
improved to be more representative of the underlying code. This will help to eschew confusion

with previous code sets and capabilities.
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8.0 APPENDICES
There is one important item to note in looking at the code included in the Appendices. While
the code directory is called Optim++ and the simulation object is called optimizer, nothing
is actually being optimized in the presented example. Instead, the method simply targets a
desired final spatial location given some arbitrary initial state. The optimization names were
preserved from previous projects because the Trick Monte Carlo Optimization framework is used

here to accomplish the targeting procedure.
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Appendix A — Finite Differencing Code

Ball++/L1/include/Ball.dd

/***************************** TRICK HEADER KAKAKA KA KA KA A A AR A A A A A A A AR A A A A, K

PURPOSE:
(Ball model parameter default init. data.)
REFERENCE :
(((Bailey, R.W, and Paddock, E.J.)
(Trick Simulation Environment) (NASA:JSC #37943)
(JSC/Engineering Directorate/Automation, Robotics and Simulation
Division)
(March 1997)))
ASSUMPTIONS AND LIMITATIONS:
((2 dimensional space)
(Constant Force))
PROGRAMMERS :
(((Edwin Z. Crues) (Titan Systems Corp.) (Feb 2002) (C++ Ball
Model) ) )
((Kyle Brill, Chun-Yi Wu, Victor Rodriguez, Harsh Shah) (UT
Austin) (May 2010)))

*********************************************************************/

Ball.state.input.mass {kg} = 10.0 ;

Ball.state.input.r[0] {km} = 42000.0 ;
Ball.state.input.r[1] {km}
Ball.state.input.r[2] {km}

o
o O
oo
.-

Ball.state.input.v[0] {km/s} = 0.0 ;

Ball.state.input.v[1l] {km/s} = 3.5 ;
Ball.state.input.v[2] {km/s} = 0.0 ;
Ball.state.input.pertr[0] {km} = .01;
Ball.state.input.pertr[1l] {km} = .01;
Ball.state.input.pertr[2] {km} = .01;
Ball.state.input.pertv[0] {km/s} = .0001;
Ball.state.input.pertv[1l] {km/s} = .0001;
Ball.state.input.pertv([2] {km/s} = .0001;

Ball.state.input.mu {km3/s2} = 398600.0;
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Ball++/L1/include/Ball.hh

/***************************** TRICK HEADER KAKA KA A KA A A A AR A A A A A A A A A A KA, K

PURPOSE:
(Ball model EOM state parameter definition.)
REFERENCES :
(((Bailey, R.W, and Paddock, E.J.)
(Trick Simulation Environment) (NASA:JSC #37943)
(JSC/Engineering Directorate/Automation, Robotics and Simulation
Division)
(March 1997)))
ASSUMPTIONS AND LIMITATIONS:
(Translational EOM only))
LIBRARY DEPENDENCY :
((Ball.o)
(RallStateDeriv.o)
(BallStateInit.o)
(BallStatelInteg.o)
(RallForceField.o))
PROGRAMMERS :
(((Robert W. Bailey) (Sweet Systems Inc) (March 1997) (Tutorial
Lesson 1))
((Edwin Z. Crues) (Titan Systems Corp.) (Jan 2002) (Crude C++
translation)))
((Kyle Brill, Chun-Yi Wu, Victor Rodriguez, Harsh Shah) (UT
Austin) (May 2010)))

*********************************************************************/

#ifndef BALL HH
#define BALL HH

// Trick include files.
#include "sim services/include/integrator.h"

/* Model include files. */
#include "BallState.hh"

class Ball {
public:
// Default constructor and destructor.
Ball ()
~Ball ();

// Initialization functions.
int state init();

// Derivative class Jjobs.
int state deriv();
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// State Transition Matrix calculator.
int calc phi (double phi[6][6]);

// Integration class jobs.
int state integ( INTEGRATOR * integ );

// Trick requires all logged data to be public.
BallState state; /* -- Ball state object. */

b

#endif /* BALL HH */

Ball++/L1/include/ball _integ.d

/***************************** TRICK HEADER KAKAKA KA KA KA A A A AR A A A A A AR A A A KA, K

PURPOSE:
(Ball model state integrator default initialization data.)
REFERENCE:
(((Bailey, R.W, and Paddock, E.J.)
(Trick Simulation Environment) (NASA:JSC #37943)
(JSC/Engineering Directorate/Automation, Robotics and Simulation
Division)
(March 1997)))
ASSUMPTIONS AND LIMITATIONS:
((3 dimensional space))
PROGRAMMERS :
((Kyle Brill, Chun-Yi Wu, Victor Rodriguez) (UT Austin) (May 2010)))

*********************************************************************/

#define NUM STEP 12 /* use up to 12 intermediate steps:
8th order RK Fehlberg */

#define NUM VARIABLES 42 /* x,y,z position state and x,vy,z

velocity state */

INTEGRATOR.state = alloc(NUM_VARIABLES) ;
INTEGRATOR.deriv = alloc (NUM STEP) ;
INTEGRATOR.state ws = alloc(NUM STEP) ;
for (int kk = 0 ; kk < NUM STEP ; kk++ ) {

INTEGRATOR.deriv [kk] =_alloc(NUM_VARIABLES) ;
INTEGRATOR.state ws[kk] = alloc(NUM VARIABLES) ;
}
INTEGRATOR.num state = NUM VARIABLES ;
INTEGRATOR.option = Runge Kutta 4 ; /* 4th order Runge Kutta
*/
INTEGRATOR.init = True ;

INTEGRATOR.first step deriv = Yes ;

#undef NUM STEP
#undef NUM VARIABLES
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Ball++/L1/include/BallState.hh

/***************************** TRICK HEADER KAKA KA KA KA KA A KA A AR A A AR A AR A A A A A, K

PURPOSE:
(Ball model state parameter definition.)
REFERENCE :
(((Bailey, R.W, and Paddock, E.J.)
(Trick Simulation Environment) (NASA:JSC #37943)
(JSC/Engineering Directorate/Automation, Robotics and Simulation
Division)
(March 1997)))
ASSUMPTIONS AND LIMITATIONS:
(Always toward a stationary point))
PROGRAMMERS :
(( (Robert W. Bailey) (Sweet Systems Inc) (March 1997) (Tutorial
Lesson 1))
((Edwin Z. Crues) (Titan Systems Corp.) (Jan 2002) (Crude C++
translation)))
((Kyle Brill, Chun-Yi Wu, Victor Rodriguez) (UT Austin) (May
2010)))

*********************************************************************/

#ifndef BALL STATE HH
#define BALL STATE HH

class BallStateInput {

public:
double mass; /* *1 kg Total mass. */
double mu; /* *1i (km3/s2) gravitational parameter*/
double r[3]; /* *1 (km) position vector */
double vI[3]; /* *1 (km/s) velocity vector */
double pertr[3]; /* *1 (km) position perturbation vector */
double pertv[3]; /* *1 (km/s) velocity perturbation vector
*/

b

class BallStateOutput {

public:
double r[7][3];: /* *o (km) position states matrix */
double v[7][3]; /* *o (km/s) velocity states matrix */
double al[7][3]: /* *o (km/s2) XYZ accelerations matrix */

b

class BallState {

public:

/* Member data. */

BallStateInput input; /* —-- User inputs */
BallStateOutput output; /* -- User outputs. */

b

#endif /* BALL STATE HH */
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Ball++/L1/src/Ball.cpp

/***************************** TRICK HEADER KAKAKA KA KA KA A A AR A A A AR A A A A AR KA, K

PURPOSE:
(Ball::Ball ball object constructor.)
(Ball::calc phi state transition matrix calculator.)
REFERENCE :
(((Bailey, R.W, and Paddock, E.J.)
(Trick Simulation Environment) (NASA:JSC #37943)
(JSC/Engineering Directorate/Automation, Robotics and Simulation
Division)
(March 1997)))
ASSUMPTIONS AND LIMITATIONS:
((3 dimensional space)
(X-axis is horizontal and positive to the right)
(Y-axis is vertical and positive up)
CLASS:
(N/A)
LIBRARY DEPENDENCY :
((Ball.o))
PROGRAMMERS :
(((Robert W. Bailey) (Sweet Systems Inc) (March 1997) (Tutorial
Lesson 1))
((Edwin Z. Crues) (Titan Systems Corp.) (Jan 2002) (Crude C++
translation)))
((Kyle Brill, Chun-Yi Wu, Victor Rodriguez, Harsh Shah) (UT
Austin) (May 2010)))

*********************************************************************/

/* System include files. */
#include <iostream>

/* Model include files. */
#include "../include/Ball.hh"
#include "../include/BallState.hh"

// Default consructor.
Ball::Ball() /* RETURN: -- None. */
{
// Print out constructor message.
printf ("In Ball constructor.\n");
}
// Destructor.
Ball::~Ball() /* RETURN: -- None. */
{
// Print out destructor message.
printf ("In Ball destructor.\n");
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/* ENTRY POINT */

int Ball::calc phi(double phi[6][6]) /* RETURN: -- Always return zero.
*/ -
{
/* PERTURBATION VECTOR */
double perts[6];
/* OUTPUT STATES VECTOR */
double outputs [42];
perts[0] = this->state.input.pertr[0];
perts[l] = this->state.input.pertr[1l];
perts([2] = this->state.input.pertr([2];
perts[3] = this->state.input.pertv([0];
perts[4] = this->state.input.pertv([1l];
perts[5] = this->state.input.pertv([2];
/* CONVERT OUTPUT STATE MATRICES TO OUTPUT STATES VECTOR */
for ((int n =0 ; n < 7 ; n++ )
{
outputs[6*n+0] = this->state.output.r[n][0];
outputs[6*n+l] = this->state.output.r[n][1l];
outputs[6*n+2] = this->state.output.r[n][2];
outputs[6*n+3] = this->state.output.v[n][0];
outputs[6*n+4] = this->state.output.v[n][1l];
outputs[6*n+5] = this->state.output.v[n][2];

}

/* CALCULATE STATE TRANSITION MATRIX --

/* RETURN */
return (0) ;

for ( int 1 =0 ; 1 <
{
for ( int j = 0 ;
{
phi[j][1i]
perts[i] ;

6 ; i++ )

j < 6 ;

gt )

= ( outputs[j+6* (i+1)]

- outputs|[j]

)
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Ball++/L1/src/BallStateDeriv.cpp

/***************************** TRICK HEADER KAKA KA KA A KA A A A A A A A A A A A A A A A A A, K

PURPOSE:
(Ball::state deriv solves for the Ball accelerations)
REFERENCE :
(((Bailey, R.W, and Paddock, E.J.)
(Trick Simulation Environment) (NASA:JSC #37943)
(JSC/Engineering Directorate/Automation, Robotics and Simulation
Division)
(March 1997)))
ASSUMPTIONS AND LIMITATIONS:
((3 dimensional space)

(X-axis is horizontal and positive to the right)

(Y-axis is vertical and positive up)

(derivative of position already exists as velocity vector)
CLASS:

(derivative)
LIBRARY DEPENDENCY :

((BallStateDeriv.o))
PROGRAMMERS :

(((Robert W. Bailey) (Sweet Systems Inc) (March 1997) (Tutorial
Lesson 1))

((Edwin Z. Crues) (Titan Systems Corp.) (Jan 2002) (Crude C++
translation)))

((Victor Rodriguez, Harsh Shah, Kyle Brill) (UT Austin) (May
2010)))
*********************************************************************/
/* Trick include files. */

#include "trick utils/math/include/vector macros.h"
/* Model include files. */

#include "../include/Ball.hh"
/* ENTRY POINT */
int Ball::state deriv() /* RETURN: -- Always return zero. */

{
/* GET SHORTHAND NOTATION FOR DATA STRUCTURES */

BallStateInput * state in = & (this->state.input);
BallStateOutput * state out = &(this->state.output);
/* SOLVE FOR THE X AND Y ACCELERATIONS OF THE BALL */
for(int 1 = 0; i<7; i++)
{
double mag = V_MAG (state out->r[i]);
state out->a[i][0] = -state in->mu * state out->r[i][0] /
pow (mag, 3)
state out->a[i][1]
pow (mag, 3) ;
state out->a[i][2]
pow (mag, 3) ;
}
/* RETURN */
return (0) ;

-state in->mu * state out->r[i][1] /

-state in->mu * state out->r[i][2] /
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Ball++/L1/src/BallStatelnit.cpp
/***************************** TRICK HEADER R b b b b db b b I b b b b db b b b b b b b g b b g

PURPOSE:
(Ball::state init passes the input state vectors to the output
state matrices.)
REFERENCE :
(((Bailey, R.W, and Paddock, E.J.)
(Trick Simulation Environment) (NASA:JSC #37943)
(JSC/Engineering Directorate/Automation, Robotics and Simulation
Division)
(March 1997)))
ASSUMPTIONS AND LIMITATIONS:
((3 dimensional space)
(Positive X is horizontal to the right)
(Positive Y is vertical and up))
CLASS:
(initialization)
LIBRARY DEPENDENCY :
((BallStateInit.o))
PROGRAMMERS :
(((Robert W. Bailey) (Sweet Systems Inc) (March 1997) (Tutorial
Lesson 1))
((Edwin Z. Crues) (Titan Systems Corp.) (Jan 2002) (Crude C++
translation)))
((Chun-Yi Wu, Kyle Brill, Victor Rodriguez) (UT Austin) (May 2010))

*********************************************************************/

/* Model include files. */
#include "../include/Ball.hh"

/* ENTRY POINT */
int Ball::state init () /* RETURN: -- Always return zero. */
{

/* GET SHORHAND NOTATION FOR DATA STRUCTURES */
BallStateInput * state in = &(this->state.input);
BallStateOutput * state out = &(this->state.output);

/* TRANSFER INPUT POSITION AND VELOCITY VECTORS TO
OUPUT STATES MATRICES */
for ((int n =0 ; n < 7 ; n++ )

{

state out->r[n] [0] = state in->r[0]; /* X state */
state out->r[n] [1] = state in->r[1l]; /* Y state */
state out->r[n] [2] = state in->r[2]; /* Z state */
state out->v[n] [0] = state in->v([0];
state out->v[n][1l] = state in->v[1l];
state out->v[n][2] = state in->v([2];
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/* ADD THE APPROPRIATE PERTURBATIONS TO THE NECESSARY
STATES IN THE OUTPUT STATES MATRICES */

for (int 1 =0 ; 1 < 3 ; i++ )

{
state out->r[i+1][i] += state in->pertr[i];
state out->v[i+4][i] += state in->pertv[i];

}

/* RETURN */
return( 0 );



Ball++/L1/src/BallStatelnteg.cpp
/***************************** TRICK HEADER R b b b b b b b 4 b b b b g b b b b b b b g b b g 4

PURPOSE:
(Ball::state integ performs the following:
-loads the position states into the INTEGRATOR state ws arrays
-loads the velocity states into the INTEGRATOR state
derivative ws
-loads the velocity states into the INTEGRATOR state ws arrays
-loads the acceleration states into the INTEGRATOR state
derivative ws
-calls the TRICK state integration service
-unloads the new states from the INTEGRATOR ws arrays
REFERENCE:
(((Bailey, R.W, and Paddock, E.J.)
(Trick Simulation Environment) (NASA:JSC #37943)
(JSC/Engineering Directorate/Automation, Robotics and Simulation
Division)
(March 1997)))
ASSUMPTIONS AND LIMITATIONS:
((3 dimensional space)
(integrate accel to pos as two first order diffEQs))
CLASS:
(integration)
LIBRARY DEPENDENCY:
((BallstateInteg.o))
PROGRAMMERS :
(((Robert W. Bailey) (Sweet Systems Inc) (March 1997) (Tutorial
Lesson 1))
((Edwin Z. Crues) (Titan Systems Corp.) (Jan 2002) (Crude C++
translation)))
((Kyle Brill, Chun-Yi Wu, Victor Rodriguez) (UT Austin) (May
2010)))

*********************************************************************/

/* System include files. */
#include <stdio.h>

/* Trick include files. */
#include "sim services/include/integrator.h"

/* Model include files. */
#include "../include/Ball.hh"

/* ENTRY POINT */
int Ball::state integ( /* RETURN: -- Integration multi-step id.
*/

INTEGRATOR * integ ) /* INOUT: -- Trick state integration
parameters. */

{
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/* GET SHORTHAND NOTATION FOR DATA STRUCTURES */
BallStateOutput * state out = &(this->state.output);

/* LOAD THE POSITION AND VELOCITY STATES */
for ((int n =0 ; n < 7 ; n++ )

{

integ->state[n*6+0] = state out->r[n] [0];
integ->state[n*6+1] = state out->r[n][1];
integ->state[n*6+2] = state out->r[n][2];
integ->state[n*6+3] = state out->v[n] [0];
integ->state[n*6+4] = state out->v[n][1];
integ->state[n*6+5] = state out->v[n][2];

}

/* LOAD THE POSITION AND VELOCITY STATE DERIVATIVES */
for ((int n =0 ; n < 7 ; n++ )

{

’

’

’

r

integ->deriv[integ->intermediate step] [n*6+0] = state out->v[n][0];
integ->deriv[integ->intermediate step] [n*6+1] = state out->v[n][1l];
integ->deriv[integ->intermediate step] [n*6+2] = state out->v[n][2];
integ->deriv[integ->intermediate step] [n*6+3] = state out->a[n][0];
integ->deriv[integ->intermediate step] [n*6+4] = state out->a[n][1l];
integ->deriv[integ->intermediate step] [n*6+5] = state out->a[n][2];

}

/* CALL THE TRICK INTEGRATION SERVICE */

integrate( integ );

/* UNLOAD THE NEW POSITION AND VELOCITY STATES */

for ((int n =0 ; n < 7 ; n++ )

{
state out->r[n] [0] = integ->state ws[integ->intermediate step] [n*6+0];
state out->r[n][1] = integ->state ws[integ->intermediate step] [n*6+1]
state out->r[n] [2] = integ->state ws[integ->intermediate step] [n*6+2]
state out->v[n] [0] = integ->state ws[integ->intermediate step] [n*6+3]
state out->v[n][1] = integ->state ws[integ->intermediate step] [n*6+4]
state out->v[n][2] = integ->state ws[integ->intermediate step] [n*6+5]

/* RETURN */
return( integ->intermediate step );

’
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Appendix B — Targeting Code

Ball++/Optim++/include/Optimization.dd
/************************** TRICK HEADER Lk b I b b b b b b b 4 b b 4 b b b b d b b 2 b g b b i 4

PURPOSE: (Optimization Default Data)

*********************************************************************/

Optimization.optim v[0] {km/s} 0.0 ;
Optimization.optim v[1] {km/s} = 0.0 ;
Optimization.optim v[2] {km/s} = 0.0 ;
Optimization.deltav[0] {km/s} 0.0 ;
Optimization.deltav[1l] {km/s} = 0.0 ;
Optimization.deltav[2] {km/s} = 0.0 ;
Optimization.r des[0] {km} = 0.0;
Optimization.r des[1] {km} = 50000.0;
Optimization.r des[Z2] {km} = 0.0;

Ball++/Optim~++/include/Optimization.hh
/************************* TRICK HEADER R I b I b b b b b b I b b d b b b b a4 b b b b b b 4

PURPOSE:
( Header for Optimization class )
LIBRARY DEPENDENCY :
((Optimization.o)
(OptimInit.o)
(OptimPreJobs. o)
(OptimPostJobs.o))

*********************************************************************/

#ifndef OPTIMIZATION HH
#define OPTIMIZATION HH

#include "../../Ll/include/Ball.hh"

class Optimization
{
public:
// Constructor and Destructor
Optimization() ;
~Optimization () ;

// Optimization variables

double optim v[3]; /* (km/s) optimal initial velocity */
double deltav([3]; /* (km/s) change in initial velocity*/
double rf[3]; /* (km) actual final position*/
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b

double phi[6][6]; /* state transition matrix*/

double r des[3]; /* (km) desired final position*/

double r0[3]; /* (km) the initial position of the first run */
double vO0[3]; /* (km/s) the initial velocity of the first run */
int counter; /* iteration counter */

// Optimization Initialization
int optim init();

// The "pre" job function. This contains the optimization
// algorithm and stopping condtions.
int ball pre master (Ball* B);

// The "post" job functions. These contain the TCP/IP
// connection that the master/slave framework uses.
int ball post master();

int ball post slave(Ball* B);

#endif
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Ball++/Optim++/src/Optimization.cpp

/************************** TRICK HEADER Rk b I b b b b b b b 4 b b 4 b b b b d b I 2 b d b b b 4
PURPOSE:
(Optimization:Optimization optimizer object constructor.)
CLASS:
(N/A)
LIBRARY DEPENDENCY:
((Optimization.o))
PROGRAMMERS :
((Kyle Brill, Chun-Yi Wu, Victor Rodriguez) (UT Austin) (May 2010)))

*********************************************************************/

/* System include files. */
#include <iostream>

/* Model include files. */
#include "../include/Optimization.hh"

// Default constructor
Optimization::Optimization() /* RETURN: -- None. */
{

printf ("In Optim constructor.\n");

}

// Destructor
Optimization::~Optimization() /* RETURN: -- None. */
{

printf ("In Optim destructor.\n");
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Ball++/Optim~++/src/Optiminit.cpp
/***************************** TRICK HEADER R b b b b b b b I b b b b g b b b b db b b g b b b 4

PURPOSE:
(Optimization::state init initializes all necessary variables
CLASS:
(monte master init)
LIBRARY DEPENDENCY:
((OptimInit.o))
PROGRAMMERS :
(((Chun-Yi Wu, Kyle Brill, Victor Rodriguez) (UT Austin) (May 2010))

*********************************************************************/

#include "../include/Optimization.hh"

/* ENTRY POINT */
int Optimization::optim init() /* RETURN: -- Always return zero. */

{
/* INITIALIZE ITERATION COUNTER */

counter = 0;

/* RETURN */
return (0) ;
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Ball++/Optim++/src/OptimPreJobs.cpp
/*********************** TRICK HEADER R b b b b b b b 2 b b b b b b S b b b b b g b b b b b b b d b e

PURPOSE:
(Optimization::ball pre master contains the targeting algorithm
and end condition)
CLASS:
(monte master pre)
LIBRARY DEPENDENCY:
((OptimPreJobs.o))
PROGRAMMERS :
(((Chun-Yi Wu, Kyle Brill, Victor Rodriguez, Field Manar) (UT
Austin) (May 2010))

*********************************************************************/

/* System include files. */
#include <iostream>

/* Trick include files. */

#include "sim services/include/exec proto.h"
#include "trick utils/math/include/trick math.h"
#include "trick utils/math/include/vector macros.h"

/* Model include files. */
#include "../include/Optimization.hh"
#include "../../Ll/include/Ball.hh"

/* ENTRY POINT */
int Optimization::ball pre master(Ball *B) /* RETURN: -- Always return
zero. */
{
/* INCREMENT ITERATION COUNTER */
this->counter++ ;

double B mat[3][3
double B inv[3][3
double error([3];

]

3
3 ]

.
4
.
4

if ( this->counter > 1 )
{
/* CALCULATE THE DIFFERENCE BETWEEN THE DESIRED FINAL POSITION
AND THE ACTUAL FINAL POSITION */
V_SUB( error , this->r des , this->rf );

/* ABSOLUTE VALUE OF THE MAXIMUM ERROR OF ALL POSITION
COMPONENTS */
double max = error[0];
if ( —-error[l] > max )
max = -—-error[1l];
if ( error[l] > max )
max = error[l];
if ( —-error[0] > max )
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max = —-error[0];

if ( error[2] > max )
max = error[2];

if ( —-error([2] > max )
max = -error[2];

printf ("\nIteration #: %d\n", this->counter-1);
printf ("\nFinal Position:\nr x = %f km\nr y = %f km\nr z = %f
km\n", r£[0],rf[1],rf[2]);

/* STOPPING CONDITION IS MAX ERROR < .00001 km OR 20 ITERATIONS
*/
if( max < 0.00001 || this->counter == 20)
{
prll’ltf ("\n********************\n") ;
printf ("The change in velocity necessary to reach the desired
final location\n\n");
printf("r des x = $f km\nr des y = %f km\nr des z = %f
km\n",r des[0],r des[1l],r des[2]);
printf ("\nfrom the initial state\n\nr x0 = %f km\nr y0 = $f
km\nr z0 = $f km\nv _x0 = %f km/s\nv_y0 = %$f km/s\nv_z0 = %f
km/s\n",r0[0],r0[1],r0[2],v0[0],v0[1],v0[2]);
printf ("\nis\n\ndeltav _x = %f km/s\ndeltav_ y = %f
km/s\ndeltav_z = %f km/s\n",optim v[0]-vO[O],optim v[1]-
vO[1l],optim v[2]-vO0[2]);
printf ("\nThe targeter took %d iterations\n",this->counter-
1)
prll’ltf ("********************\n\n\n") ;

/* TERMINATES THIS FUNCTION ONCE THE END CONDITION IS REACHED
*/
exec terminate ("ball pre master","End Condition reached.");
}
else
{
printf ("\nContinuing algorithm...end condition not
met.\n\n") ;

}

B->state.input.v[0] = this->optim v[0] ;
B->state.input.v[1l] = this->optim v[1] ;
B->state.input.v[2] = this->optim v[2] ;
1
else

{
/* STORE FIRST INTIAL STATE SO WE CAN SUGGEST A DELTA V
AT THE END OF THE ALGORITHM */

this->r0[0] = B->state.input.r[0];
this->r0[1] = B->state.input.r[1l];
this->r0[2] = B->state.input.r[2];
this->v0[0] = B->state.input.v[0];
this->v0[1l] = B->state.input.v[1l];
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this->v0[2] = B->state.input.v[2];

/* RETURN -- this is the first run,
return (0);

}

/* RETURN */
return (0) ;

nothing else left to do*/
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Ball++/Optim~++/src/OptimPostJobs.cpp
/************************** TRICK HEADER Lk b I b b b b b b b 4 b b b b b b b d b b 2 b g b b b 4

PURPOSE:
(Optimization::ball post master read slave results via
TCP/IP Comm and calculate state transition matrix)
LIBRARY DEPENDENCY :
((OptimPostJobs.o))
PROGRAMMERS :
(((Chun-Yi Wu, Kyle Brill, Victor Rodriguez, Field Manar) (UT
Austin) (May 2010))

*********************************************************************/

/* System include files. */
#include <iostream>

/* Trick include files. */

#include "sim services/include/executive.h"
#include "sim services/include/exec proto.h"
#include "trick utils/math/include/trick math.h"
#include "trick utils/math/include/vector macros.h"

/* Model include files. */
#include "../include/Optimization.hh"
#include "Ball++/Ll/include/Ball.hh"

/* ENTRY POINT */
int Optimization::ball post master () /* RETURN: -- Always return zero.
* / - B
{
double B mat[3][3], B inv([3][3], error[3], deltav[3];

Ball B curr ;
EXECUTIVE* E ;
E = exec get exec() ;

/* READ SLAVE'S RESULTS */
tc _read( &E->monte.work.data conn, (char*) &B curr, sizeof (Ball) );

/* STORE FINAL OUTPUT POSITION VECTOR */
for ((int n =0 ; n < 3 ; n++ )
{
this->rf[n] = B curr.state.output.r[0] [n];
1

/* CALCULATE THE STATE TRANSITION MATRIX FOR THE CURRENT BALL
OBJECT */
B curr.calc phi((this->phi));

for(int i = 0; 1 <3; i++){
for(int 7 = 0; J<3; Jj++){
B mat[i][j] = this->phi[i] [j+3];
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}

}

V_SUB (error, this->r des, this->rf);
dm invert (B inv, B mat);
MxV (deltav, B inv, error);

this->optim v[0] = B curr.state.input.v[0] + deltav[0];
this->optim v[1l] = B curr.state.input.v[1l] + deltav[1l];
this->optim v[2] = B curr.state.input.v[2] + deltav[2];

/* RETURN */
return (0) ;

/* ENTRY POINT */
int Optimization::ball post slave ( Ball* B ) /* RETURN: -- Always
return zero. */

{

EXECUTIVE* E ;
E = exec get exec();

/* SEND BALL OBJECT */
tc _write (&E->monte.work.data conn, (char*) B, sizeof(Ball));

/* RETURN */
return (0) ;
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Appendix C — Simulation Code

SIM Ball++ LI1/M velocity target
NUM_RUNS: 300
VARS:
ball.obj.state.input.v[0] {km/s} CALC ;
ball.obj.state.input.v[1] {km/s} CALC ;
ball.obj.state.input.v[2] {km/s} CALC ;

DATA:

SIM Ball++ LI/RUN _test/input

#include "S default.dat"
#include "Modified data/data record.d"
#include "Modified data/auto_test.d"

stop = 18000.0 ;

sys.exec.monte.in.activate = Yes ;
sys.exec.monte.in.input files[0] = "M velocity target" ;
sys.exec.sim com.quiet = Yes ;

SIM Ball++ LI/Modified data/data_record.d

/*
* Default Data Recording Template.
*/
#ifndef DR_GROUP_ID
#define DR _GROUP ID sys.exec.record.num group
#endif

sys.exec.record.group[DR GROUP ID].record = Yes ;
sys.exec.record.group [DR GROUP ID].name "Balll" ;
sys.exec.record.group[DR GROUP ID].format DR Binary ;
[
[

sys.exec.record.group [DR GROUP ID].freq DR Always ;

sys.exec.record.group[DR GROUP ID].cycle {s} = 0.1 ;

sys.exec.record.group[DR GROUP ID].ref[0] =
"ball.obj.state.output.r[0] [0] ,
"ball.obj.state.output.r[0][1]" ,
"ball.obj.state.output.r[0] [2]

AL

AL .
14

DR_GROUP_ ID++ ; /* add 1 to DR _GROUP_ID, THIS SETS DR_GROUP ID
* FOR THE NEXT DATA RECORDING FILE */

UP
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SIM Ball++ L1/Modified data/auto_test.d

/*
* Auto Test Data Recording Template.
*/
#ifndef DR_GROUP_ID
#define DR _GROUP ID sys.exec.record.num group
#endif

sys.exec.record.group = alloc( DR GROUP ID + 1 ) ;
sys.exec.record.group[DR GROUP ID].record
sys.exec.record.group [DR GROUP ID].name
sys.exec.record.group[DR GROUP ID].format
sys.exec.record.group [DR GROUP ID].freq
sys.exec.record.group[DR GROUP ID].cycle {s}
sys.exec.record.group[DR GROUP ID].ref[0] =

AL

"ball.obj.state.output.r[OT[O] ,
"ball.obj.state.output.r[0][1]" ,
"ball.obj.state.output.r[0] [2]

AL .
14

DR_GROUP_ID++ ;

Yes ;

"auto"

DR Fixed Ascii ;
DR Always ;

= 10.0 ;

/* add 1 to DR _GROUP ID, THIS SETS DR GROUP ID UP

* FOR THE NEXT DATA RECORDING FILE */
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SIM Ball++ L1/S define
sim object { /*=== TRICK EXECUTIVE

*=== DATA STRUCTURES ===%*/
sim services/include: EXECUTIVE exec
(sim services/include/executive.d) ;

*=== JOBS ===*
(automatic) sim_services/input_processor:
input processor ( Inout INPUT PROCESSOR * IP = &sys.exec.ip ) ;

(automatic last) sim_services/exec:
var_server_ sync( Inout EXECUTIVE * E = &sys.exec ) ;

} sys i
J¥m=mm=mmmmmmmmmmmmmeemm e e e e e e */
sim object { /*--- ball -—-—————————————- -
—
[r === DATA STRUCTURE DECLARATIONS —----- */
Ball++/L1: Ball obj

(Ball++/L1/include/Ball.dd);
sim services/include: INTEGRATOR integ
(Ball++/Ll/include/ball integ.d);

[ K= EOM DERIVATIVE AND STATE INTEGRATION JOBS —-—---- */
(derivative) Ball++/L1l: ball.obj.state deriv();

(integration) Ball++/Ll: ball.obj.state integ(
Inout INTEGRATOR * integ = &ball.integ );

} ball; /*-——-——————

sim object
{
/* Data Structure Declarations */
Ball++/Optim++: Optimization obj
(Ball++/Optim++/include/Optimization.dd) ;

/* Optimization Initialization and Pre Jobs */
(monte master init) Ball++/Optim++:
optimizer.obj.optim init () ;

(monte master pre) Ball++/Optim++:
optimizer.obj.ball pre master( Ball* B = &ball.obj ) ;
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/* Post Optimization Jobs */
(monte master post) Ball++/Optim++:
optimizer.obj.ball post master() ;

(monte slave post) Ball++/Optim++:
optimizer.obj.ball post slave( Ball* B = &ball.obj

} optimizer;

integrate (0.01) ball;

)

.
4
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Appendix D — JEOD Targeting Code

models/Optim+-+/include/Optimization.dd

/************************* TRICK HEADER KA A KA A A A A A A A A A A A A A AN KA AR AKX KKK

PURPOSE:

(Optimization Default Data)

*********************************************************************/

Optimization

Optimization.
Optimization.

Optimization.
Optimization.
Optimization.

Optimization.
Optimization.
Optimization.

Optimization.
Optimization.
Optimization.
Optimization.
Optimization.
Optimization.

.optim v[0]
optim v[1]
optim v([2]

deltav[0]
deltav[1l]
deltav[2]

r des[0]
r des[1]
r des[2]

{m/s}
{m/s}
{m/s}

{m/s}
{m/s}
{m/s}

{m}
{m}
{m}

{m}
{m}
{m}
{m/s}
{m/s}
{m/s}

o O o

O O O

0.0;
50000000.0;
0.0;

O O O

o O o
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models/Optim+-+/include/Optimization. hh

/************************* TRICK HEADER KA KA KA KA KA A A A A A A A A A A A AR A A A A A AR KA, K

PURPOSE :

( Header for Optimization class )

LIBRARY DEPENDENCY:

((Optimization.o)
(OptimInit.o)
(OptimPreJobs. o)
(OptimPostJobs.o))

*********************************************************************/

#ifndef OPTIMIZATION HH
#define OPTIMIZATION HH

#include "../../dynamics7dyn_body/include/simple_6dof_dyn_body.hh"

class Optimization

{

b

public:

// Constructor and Destructor
Optimization() ;
~Optimization () ;

// Optimization variables

double optim v[3]; /* (m/s) optimal initial velocity */
double deltav([3]; /* (m/s) change in initial velocity*/
double rf[3]; /* (m) actual final position*/

double phi[6][6]; /* state transition matrix*/
double r des[3]; /* (m) desired final position*/
double pertr([3]; /* (m) position perturbations*/
double pertv([3]; /* (m/s) velocity perturbations*/

double r0[3]; /*(m) initial position of the first run*/
double vO0[3]; /*(m/s) initial velocity of the first run*/
double inputs[6]; /*input states to update at each iteration*/

double outputs[42]; /* store output states */
int counter;

// Optimization Initialization
int optim init();

// The "pre" job function. This contains the optimization
// algorithm and stopping condtions.
int ball pre master (Simple6DofDynBody* S);

// The "post" job functions. These contain the TCP/IP
// connection that the master/slave framework uses.
int ball post master();

int ball post slave(Simple6DofDynBody* S);

int calc phi();

#endif
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models/Optim+-+/src/Optimization.cpp
/**************************** TRICK HEADER****************************

PURPOSE:
(Optimization:Optimization optimizer object constructor.)
CLASS:
(N/A)
LIBRARY DEPENDENCY:
((Optimization.o))
PROGRAMMERS :
((Kyle Brill, Chun-Yi Wu, Victor Rodriguez) (UT Austin) (May 2010)))

*********************************************************************/

/* System include files. */
#include <iostream>

/* Model include files. */
#include "../include/Optimization.hh"

// Default constructor
Optimization::Optimization() /* RETURN: -- None. */
{

printf ("In Optim constructor.\n");

}

// Destructor
Optimization::~Optimization() /* RETURN: -- None. */
{
printf ("In Optim destructor.\n");
}

/* ENTRY POINT */
int Optimization::calc phi() /* RETURN: -- Always return zero. */

{
double perts[6];

perts[0] = pertr[0];
perts[l] = pertr[l];
perts|[2] = pertr[2];
perts([3] = pertv[0];
perts[4] = pertv[l];
perts[5] = pertv([2];

for (int i =0 ; 1 < 6 ; i++ )
for (int jJ =0 ; j < 6 ; Jj++ )

( outputs[j+6* (i+1)] - outputs([j] ) /

o)
o
'_l.

-
'_l

I
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printf ("STATE TRANSITION MATRIX\nCalcPHI\n") ;
for ( int 1 =0 ; 1 < 6 ; i++ )
{
for ( int 7 = 0
{

;] < 6 5 g+t )

printf ("%11.5f ",phi[il[3j]):
}
printf ("\n");
}

/* RETURN */
return (0) ;



models/Optim+-+/src/OptimInit.cpp
/********************************* TRICK HEADER kA hkhkkhk Kk khhkkhkkhkhkkhhrkhkkhkkxkhk Kk Kk k%

PURPOSE:
(Optimization::state init intializes all necessary variables
CLASS:
(monte master init)
LIBRARY DEPENDENCY:
((OptimInit.o))
PROGRAMMERS :
(((Chun-Yi Wu, Kyle Brill, Victor Rodriguez) (UT Austin) (May 2010))

*********************************************************************/

#include "../include/Optimization.hh"

/* ENTRY POINT */
int Optimization::optim init() /* RETURN: -- Always return zero. */

{
/* INITIALIZE ITERATION COUNTER */

counter = 0;

/* RETURN */
return (0) ;
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Optim++/src/OptimPostJobs.cpp

/****************************** TRICK HEADER ER R b b b b b b b b b b b b b b b b b I b b b o 4

PURPOSE :

(Optimization::
TCP/IP Comm and calculate state transition matrix)
LIBRARY DEPENDENCY :
((OptimPostJobs.o))
PROGRAMMERS :
(((Chun-Yi Wu,

*********************************************************************/

/* System include files.

#include <iostream>

/* Trick
#include
#include
#include
#include
#include

/* Model
#include

/* ENTRY

int Optimization:

{

include files.

Kyle Brill,

*/

*/

"sim services/include/executive.h"
"dynamics/dyn body/include/simple 6dof dyn body.hh"
"sim services/include/exec_proto.h"
"trick utils/math/include/trick math.h"

"trick utils/math/include/vector macros.h"

include files.

*/

./include/Optimization.hh"

POINT */

:ball post master ()

printf ("\nPOSTMASTER\n") ;

double B mat[3][3],

Simple6DofDynBody S curr ;

EXECUTIVE* E ;

E = exec get exec()

/* READ SLAVE'S RESULTS */

B inv([3][3],

.
4

printf ("\nTC READ\n");

tc read(

sizeof (Simple6DofDynBody) )

int modulus =

&E->monte.work.data conn,

this->counter$%7;

switch (modulus)

{

case 0:

printf ("\nCASE 0:\n");

outputs[0]

= S _curr.
= S _curr.
S _curr.
S _curr.
S _curr.

core body.
core body.
core body.
core body.
core body.

(char

error[3],

*)

state.
state.
state.
state.
state.

/* RETURN:--Always

ball post master read slave results via

deltav[3];

&S curr,

trans
trans
trans
trans
trans

.position
.position
.position
.velocity
.velocity

Victor Rodriguez) (UT Austin) (May 2010))

return zero.*/
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outputs[5] = S curr.core body.state.trans.velocityl[2];
printf ("OUTPUT FROM CORE BODY\nrx = %f\n ry = $f\n rz = $f\n vx =
$f\n vy = %f\n vz =
$f\n\n", outputs[0],outputs[1l],outputs[2],ocutputs[3],outputs[4],outputs
[51)7
this->counter++;
printf ("\nBREAK\n") ;
break;
case 1:

printf ("\nCASE 1:\n");

outputs[6] = S curr.core body.state.trans.position[0];
outputs[7] = S curr.core body.state.trans.position[1l];
outputs[8] = S curr.core body.state.trans.position[2];
outputs[9] = S curr.core body.state.trans.velocity[0];
outputs[10] = S curr.core body.state.trans.velocity[1l];
outputs[1l1l] = S curr.core body.state.trans.velocity[2];
this->counter++;
break;

case 2:

printf ("\nCASE 2:\n");

outputs[12] = S curr.core body.state.trans.position[0];
outputs[13] = S curr.core body.state.trans.position[1];
outputs[14] = S curr.core body.state.trans.position[2];
outputs[15] = S curr.core body.state.trans.velocity[0];
outputs[1l6] = S curr.core body.state.trans.velocity[1l];
outputs[17] = S curr.core body.state.trans.velocity[2];
this->counter++;
break;

case 3:

printf ("\nCASE 3:\n");

outputs[18] = S curr.core body.state.trans.position[0];
outputs[19] = S curr.core body.state.trans.position[1];
outputs[20] = S curr.core body.state.trans.position[2];
outputs[21] = S curr.core body.state.trans.velocity[0];
outputs[22] = S curr.core body.state.trans.velocity[1l];
outputs[23] = S curr.core body.state.trans.velocity[2];
this->counter++;

break;

case 4:

printf ("\nCASE 4:\n");

outputs[24] = S curr.core body.state.trans.position[0];
outputs[25] = S curr.core body.state.trans.position[1];
outputs[26] = S curr.core body.state.trans.position[2];
outputs[27] = S curr.core body.state.trans.velocity[0];
outputs[28] = S curr.core body.state.trans.velocity[1l];
outputs[29] = S curr.core body.state.trans.velocity[2];
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this->counter++;

break;
case 5:

printf ("\nCASE 5:\n");

outputs|[ ] =

S _curr.
= S _curr.
S _curr.
S _curr.
S _curr.
S _curr.

this->counter++;

break;
case 6:

printf ("\nCASE 6:\n");

calc phi();

S _curr.
= S _curr.
S _curr.
S _curr.
S _curr.
S _curr.

core body.
core body.
core body.
core body.
core body.
core body.

core body.
core body.
core body.
core body.
core body.
core body.

Sstate.
State.
state.
State.
Sstate.
State.

Sstate.
Sstate.
State.
Sstate.
Sstate.
State.

trans
trans
trans
trans
trans
trans

trans
trans
trans
trans
trans
trans

.position
.position
.position
.velocity
.velocity
.velocity

.position
.position
.position
.velocity
.velocity
.velocity

printf ("STATE TRANSITION MATRIX\nPostmaster\n");

for (
{

int 1

for

{

( int j

0 ;

:O;

printf ("%$11.5f

}

printf ("\n");

}

for(int i = 0;

for (int J

}

i <3;

i< 6 ;

0;

i+

J < 6 ;

)

4 )

"yphi[i][31);

i++) {
J<3;

J++) o

B mat[i] [jJ] = this->phi[i] [j+3];

rf[0] = outputs[0];
rf[l] = outputs[l];
rf[2] = outputs[2];

V_SUB (error, this->r des, this->rf);
dm invert (B inv, B mat);
MxV (deltav, B inv, error);

inputs[3]
inputs[4]

+= deltav[0];
+= deltav[l];

(0]
(1]
(2]
(0]
(1]
(2]

(0]
(1]
(2]
(0]
(1]
(2]

4

4

4

4

4

4

.
4
.
4

4

4

4
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inputs[5] += deltav[2];

this->optim v[0] = inputs[3];
this->optim v[1] = inputs[4];
this->optim v[2] = inputs[5];

printf ("\nPOST/rf:\n");
V_PRINT (rf) ;

this->counter++;
this->counter/7 );

printf ("\nTarget #: sd\n",
printf ("rx = $f\t", outputs[0]);
printf ("ry = $f\t", outputs[1l]):;
printf ("rz = $f\t", outputs[2]);
printf ("vx = $f\t", outputs[3]);
printf ("vy = $f\t", outputs[4]):;
printf ("vz = %f\n", outputs[5]);
break;

}
/* RETURN */
printf ("\nRETURN\Nn") ;
return (0) ;

}

/* ENTRY POINT */
int Optimization::ball post slave ( Simple6DofDynBody* S )
{

EXECUTIVE* E ;

E = exec get exec();

printf ("\nPOSTSLAVE\n") ;

/* Send F(x) - which is in BSTATE */

tc write (&E->monte.work.data conn, (char*) S,
sizeof (Simple6DofDynBody) ) ;

return (0) ;



Optim++/src/OptimPreJobs.cpp

/*************************** TRICK HEADER KA A A A A A A A A A A A A AR A XA A A AKX KKK

PURPOSE :

(Optimization::ball pre master contains the targeting algorithm
and end condition)

CLASS:

(monte master pre)

LIBRARY DEPENDENCY:

((OptimPreJobs.o))

PROGRAMMERS :

(((Chun-Yi Wu, Kyle Brill, Victor Rodriguez) (UT Austin) (May 2010)

)

*********************************************************************/

/* System include files. */

#include <iostream>

/* Trick include files. */

#include "sim services/include/exec proto.h"
#include "trick utils/math/include/trick math.h"
#include "trick utils/math/include/vector macros.h"

/* Model include files. */

#include "../include/Optimization.hh"
#include "../../dynamics/dyn body/include/simple 6dof dyn body.hh"
#include

"../../dynamics/body action/include/dyn body init trans state.hh"

/* ENTRY POINT */
int Optimization::ball pre master (Simple6DofDynBody* S) /* RETURN: --
Always return zero. */

{

/* INCREMENT ITERATION COUNTER */
printf ("\nPREMASTER\n") ;
printf ("\nTARGETING THIS POSITION: \nr x = %f m\nr y = %f m\nr z =

$f m\n",r des[0],r des[1l],r des[2]);

double error([3];

if ( this->counter > 0 )
{
/* CALCULATE THE DIFFERENCE BETWEEN THE DESIRED FINAL POSITION
AND THE ACTUAL FINAL POSITION */
V_SUB( error , this->r des , this->rf );

/* ABSOLUTE VALUE OF THE MAXIMUM ERROR OF ALL POSITION COMPONENTS *
double max = error[0];
if ( —-error[l] > max )
max = -—-error[1l];
if ( error[l] > max )
max = error[l];
if ( —-error[0] > max )
max = —-error[0];
if ( error[2] > max )

/
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max = error([2];
if ( —-error([2] > max )
max = —-error[2];

printf ("\nIteration #: %d\n", this->counter);
printf ("\nFinal Position:\nr x = %f km\nr y =
km\n", rf£[0],rf[1],rf[2]);

$f km\nr z = %f

/* STOPPING CONDITION IS MAX ERROR < .00001 km OR 20 ITERATIONS */
if( max < 0.00001 || this->counter == 30)
{

printf ("\n********************\n") ;

printf ("The change in velocity necessary to reach the desired
final location\n\n");

printf("r des x = $f km\nr des y = %f km\nr des z = %f
km\n",r des[0],r des[1l],r des[2]);

printf ("\nfrom the initial state\n\nr x0 = %f km\nr y0 = $f
km\nr z0 = $f km\nv _x0 = %f km/s\nv_y0 = $f km/s\nv_z0 = %f
km/s\n",r0[0],r0[1],xr0[2],v0[0],v0[1],v0[2]);

printf ("\nis\n\ndeltav _x = %f km/s\ndeltav_ y = %f
km/s\ndeltav_z = %f km/s\n",optim v[0]-vO[O],optim v[1]-
vO[1l],optim v[2]-vO0[2]);

printf ("\nThe targeter took %d iterations\n",this-
>counter/7) ;

prlntf ("********************\n\n\n") ;

/* TERMINATES THIS FUNCTION ONCE THE END CONDITION IS REACHED */
exec terminate ("ball pre master","End Condition reached.");
}
else
{
printf ("\nContinuing algorithm...end condition not
met.\n\n");

}

int modulus = this->counter%7;
double temp;

switch (modulus)

{

case 0:

S->core body.state.trans.velocity[0] = this->optim vI[0] ;
S->core body.state.trans.velocity[1] this->optim vI[1] ;
S->core body.state.trans.velocity[2] this->optim v[2] ;
break;

case 1:

temp = inputs[0] + pertr[0];
S->core body.state.trans.position[0] = temp;
break;
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case 2:

temp = inputs[1l] + pertr[1l];
S->core body.state.trans.position[l] = temp;
break;

case 3:

temp = inputs[2] + pertr[2];
S->core body.state.trans.position[2] = temp;
break;

case 4:

temp = inputs[3] + pertv[0];
S->core body.state.trans.velocity[0] = temp;
break;
case 5:

temp = inputs[4] + pertv[1l];
S->core body.state.trans.velocity[l] = temp;
break;

case 6:

temp = inputs([5] + pertv[2];
S->core body.state.trans.velocity[2] = temp;
break;

}
else
{
/* STORE FIRST INTIAL VELOCITY SO WE CAN SUGGEST A DELTA V
AT THE END OF THE ALGORITHM */

this->r0[0] = S->core body.state.trans.position[0];

this->r0[1] = S->core body.state.trans.position[1];

this->r0[2] = S->core body.state.trans.position[2];

this->v0[0] = S->core body.state.trans.velocity[0];

this->v0[1] = S->core body.state.trans.velocity[1l];

this->v0[2] = S->core body.state.trans.velocity[2];

printf ("Using intial conditions\nrx = $f\n ry = %$f\n rz = %$f\n
vx = $f\n vy = $f\n vz = %f\nfor the first reference
trajectory\n",r0[0],r0[1],r0[2],v0[0],v0[1],v0[2]);
// printf ("Using intial conditions\nrx = $f\n ry = %$f\n rz = %$f\n
vx = $f\n vy = $f\n vz = $f\nfor the first reference trajectory\n",T-

>position[0],T->position[1l],T->position[2],T->velocity[0],T-
>velocity[1l],T->velocity[2]);

inputs[0] = S->core body.state.trans.position[0];
inputs[l] = S->core body.state.trans.position[1l];
inputs[2] = S->core body.state.trans.position[2];
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inputs[3] = S->core body.
inputs[4] = S->core body.
inputs[5] = S->core body.

/* RETURN -- this is the
return (0);

}

/* RETURN */

return

(0);

state.

state

first

trans.velocity[0];

.trans.velocity([1l];
state.

trans.velocity[2];

run,

nothing else left to do*/
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SIM 1 Optim/Modified_data/Earth/grav_controls.d

/*
PURPOSE:
(This data file sets up the vehicle gravity model controls.)

REFERENCE :
((JSC Engineering Orbital Dynamics Models))

ASSUMPTIONS AND LIMITATIONS:
((2))

PROGRAMMERS :

(((Edwin Z. Crues) (NASA) (November 2008) (--) (JEOD 2.0 Testing)))

*/

#define GC_EARTH 0

/* Associate the gravity controls for the DynBody. */

VEH OBJ.body.grav_interaction.grav controls = VEH OBJ.grav_controls;

VEH OBJ.body.grav_interaction.n grav controls = 1;

/* Set up the gravity controls for the Earth. */

VEH OBJ.grav_controls[GC EARTH].planet name = "Earth";
VEH OBJ.grav_controls[GC EARTH] .active = True;
VEH_OBJ.grav_controls[GC_EARTH].spherical = True;
VEH OBJ.grav_controls[GC EARTH] .degree = 0;

VEH OBJ.grav_controls[GC EARTH] .order = 0;
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SIM 1 Optim/Modifed_data/Integrator/integrator.d

// Set the integration options.
dynamics.integ.option = Runge Kutta 4;
dynamics.integ.first step deriv = True;

SIM 1 Optim/Modified data/vehicle/veh_state.d
// State initialization data for a typical ISS orbital state.

//

// Set the translational position.

//

VEH OBJ.trans init.subject = &VEH OBJ.body;

VEH OBJ.trans init.reference ref frame name = "Earth.inertial";
VEH OBJ.trans init.body frame id = "composite body";

VEH OBJ.trans init.position[0] {M} = 42000000.0, 0.0, 0.0;

VEH OBJ.trans init.velocity[O0] {M/s} = 0.0, 3500, 0.0;

//

// Set the rotational position.

//

VEH OBJ.lvlh init.subject = &VEH OBJ.body;
VEH OBJ.lvlh init.planet name = "Earth";

VEH OBJ.lvlh init.body frame id = "composite body";
VEH OBJ.lvlh init.orientation.data source =
Orientation::InputEulerRotation;

VEH OBJ.lvlh init.orientation.euler sequence = Yaw Pitch Roll;
VEH OBJ.lvlh init.orientation.euler angles[0] {d} = 1.0, 85.0, 0.0;
VEH OBJ.lvlh init.ang velocity[O0] {d/s} = 0.0, 0.0, 0.0;
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SIM 1 Optim/S _define

/*********************************************************************

* JSC Engineering Orbital Dynamics Tutorial Sim 1 *

* This is the simulation definition file for the JSC Engineering
Orbital *

* Dynamics for tutorial sims. It represents an example S define for a
*

* the simulation of a single 6 degree of freedom object , a spinning
stick *

*********************************************************************/

/*********************************************************************

Author: A.A. Jackson
Date: March 2009
E-Mail: albert.a.jackson@nasa.gov
Phone: 281-483-5037
Organization: ESCG, Mail Code JEO07
Simulation & Graphics Branch
Software, Robotics & Simulation Division
2101 NASA Parkway
Houston, Texas 77058
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Modified By: Christopther Thebeau
* Date: August 2009

* Description: Cleaned up to make all sims consistant
Rk b b b b d b b b b I b b 4 b b b b a2 b S b b b b b 4 b db b b I b b 4 b b b b db b b 2 b I b b a2 b db b b b b (B 2 b db b (i b

//

// sys - Trick runtime executive and data recording routines
// time - Universal time

// env - Environment: gravity

// earth - Planet environment model

// sv_dyn - Space vehicle dynamics model

// dynamics - Orbital dynamics

//

/ [/ =============================s==s==SS=SsSSs=SSsSS=SsS=Ss===s======s=======

// Define job calling intervals

#define LOW RATE ENV 60.00 // Low-rate environment update interval
#define DYNAMICS 0.03125 // Vehicle and plantary dynamics
interval (32Hz)

// Define the phase initialization priorities.

// NOTE: Initialization jobs lacking an assigned phase initialization
priority

// run after all initialization jobs that have assigned phase init
priorities.

#define P_TIME P10 // Highest priority; these jobs depend on time
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#define P_MNGR P20 // Dynamics manager initializations
#define P_ENV P30 // Environment initializations
#define P_BODY P40 // Orbital body initializations
#define P_DYN P50 // State-dependent initializations

// SIM OBJECT: sys
// This is the Trick executive model; this model should be basically
// the same for all Trick applications.

sim object {

// Data structures
sim services/include: EXECUTIVE exec
(sim services/include/executive.d) ;

// Automatic Jjobs
sim services/input processor: input processor (
Inout INPUT PROCESSOR *IP = &sys.exec.ip);

// SIM OBJECT: time
// This sim object relates simulation time to time on the Earth.

sim object {
// Data structures
environment/time: TimeManager manager;
environment/time: TimeManagerInit manager init;

// Time Scales
environment/time: TimeTAI tai;
environment/time: TimeUTC utc;

// Time Converters

environment/time: TimeConverter Dyn TAI conv_dyn tai;

environment/time: TimeConverter TAI UTC conv_tai utc
(environment/time/data/tai to utc.d);

// Initialization Jjobs
// Register the basic time scales with the time manager.

// TAI
P TIME (initialization) environment/time:
time.manager.register type (

In Time & time reg = time.tai);
P TIME (initialization) environment/time:
time.manager.register converter (
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}

//
//

In TimeConverter & time conv = time.conv _dyn tai);

// UTC
P TIME (initialization) environment/time:
time.manager.register type (

In Time & time reg = time.utc );
P TIME (initialization) environment/time:
time.manager.register converter (

In TimeConverter & time conv = time.conv_tai utc );

// Initialize the time manager.
P TIME (initialization) environment/time:
time.manager.initialize (

Inout TimeManagerInit * manager init = &time.manager init);

// Compute appropriate calendar dates at initialization.

P TIME (initialization) environment/time: time.utc.calendar update (

In double simtime = sys.exec.out.time );

// Scheduled jobs
// Update Time Scales
(DYNAMICS, environment) environment/time:
time.manager.update (
In double simtime = sys.exec.out.time);

// Update the calendar times of interest.

(DYNAMICS, environment) environment/time: time.utc.calendar update (

In double simtime = sys.exec.out.time );

time;

SIM OBJECT: env
This sim object models the space environment.

sim object {

//

// Data structures
environment/gravity: GravityModel gravity;

// Initialization
P ENV (initialization) environment/gravity:
env.gravity.initialize model (

Inout DynManager & dyn manager = dynamics.manager );

SIM OBJECT: earth



// This sim object models the space environment.

sim object {

// Data structures
environment/planet: Planet planet
(environment/planet/data/earth.d) ;

environment/gravity: GravityBody gravity body;

environment/gravity: GravityCoeffs gravity coefs

(environment/gravity/data/earth GGM02C.d);

// Initialization Jjobs
P ENV (initialization) environment/gravity:
earth.gravity body.initialize coefs(

In GravityCoeffs & coefs = earth.gravity coefs );

P_ENV (initialization) environment/gravity:
env.gravity.add grav body (
Inout GravityBody & grav _body = earth.gravity body );

P_ENV (initialization) environment/planet:
earth.planet.register model (
Inout GravityBody & grav_body = earth.gravity body,
Inout DynManager & dyn manager = dynamics.manager );

P BODY (initialization) environment/planet:
earth.planet.initialize( );

// SIM OBJECT: sv_dyn
// This sim object models a vehicle in space.

sim object {

// Data structures
// Dynamical propagation and initial state.

dynamics/dyn body: Simple6DofDynBody body;
dynamics/body action: DynBodyInitTransState trans init;
dynamics/body action: DynBodyInitRotState rot init;

dynamics/body action: DynBodyInitLvlhRotState 1lvlh init;

// Vehicle mass initialization parameters.
dynamics/body action: MassBodyInit mass_ init;

// Vehicle derived reference frames.

dynamics/derived state: EulerDerivedState euler;
dynamics/derived state: PlanetaryDerivedState pfix;
dynamics/derived state: LvlhDerivedState 1vlh;
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dynamics/derived state: EulerDerivedState lvlh euler;
dynamics/derived state: OrbElemDerivedState orb elem;

// Vehicle perturbation forces and torques.
dynamics/dyn body: Force force extern;

dynamics/dyn body: Torque torque extern;

// Vehicle environmental forces and torgues.

environment/gravity: GravityControls grav_controls([1l];

// Initialization Jjobs
P ENV (initialization) dynamics/dyn body:
sv_dyn.body.initialize model (

Inout DynManager & manager = dynamics.manager );

P DYN (initialization) dynamics/derived state:
sv_dyn.euler.initialize (

Inout DynBody & subject body = sv_dyn.body,

Inout DynManager & dyn manager = dynamics.manager );

P DYN (initialization) dynamics/derived state:
sv_dyn.pfix.initialize(

Inout DynBody & subject body = sv_dyn.body,

Inout DynManager & dyn manager = dynamics.manager );

P DYN (initialization) dynamics/derived state:
sv_dyn.lvlh.initialize(

Inout DynBody & subject body = sv_dyn.body,

Inout DynManager & dyn manager = dynamics.manager );

P DYN (initialization) dynamics/derived state:
sv_dyn.lvlh euler.initialize (

In RefFrame & ref frame = sv_dyn.lvlh.1lvlh frame,
Inout DynBody & subject body = sv_dyn.body,
Inout DynManager & dyn manager = dynamics.manager );

P DYN (initialization) dynamics/derived state:
sv_dyn.orb elem.initialize (

Inout DynBody & subject body = sv_dyn.body,
Inout DynManager & dyn manager = dynamics.manager );
(initialization) dynamics/derived state: sv_dyn.euler.update( );

(initialization) dynamics/derived state: sv_dyn.pfix.update (

(initialization) dynamics/derived state: sv_dyn.lvlh.update (

(initialization) dynamics/derived state: sv_dyn.lvlh euler.update (

) ;

) ;

(initialization) dynamics/derived state: sv_dyn.orb elem.update( );
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// Environment class Jjobs
(DYNAMICS, environment) dynamics/derived state:
sv_dyn.euler.update( );

(DYNAMICS, environment) dynamics/derived state:
sv_dyn.pfix.update( );

(DYNAMICS, environment) dynamics/derived state:
sv_dyn.lvlh.update( );

(DYNAMICS, environment) dynamics/derived state:
sv_dyn.lvlh euler.update( );

(DYNAMICS, environment) dynamics/derived state:
sv_dyn.orb elem.update( );

} sv_dyn;

sim object
{
/* Data Structure Declarations */
Optim++: Optimization obj
(Optim++/include/Optimization.dd) ;

/* Optimization Initialization and Pre Jobs */
(monte master init) Optim++:
optimizer.obj.optim init() ;

(monte master pre) Optim++:
optimizer.ob]j.ball pre master(
Simple6DofDynBody* S = &sv_dyn.body) ;
/*, DynBodyInitTransState* T = &sv_dyn.trans init);*/

/* Post Optimization Jobs */
(monte master post) Optim++:
optimizer.obj.ball post master() ;
(monte_ slave post) Optim++:
optimizer.ob]j.ball post slave(
Simple6DofDynBody* S = &sv_dyn.body ) ;

} optimizer;
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/*********************************************************************

COLLECT: Vehicle force and torque collection statements for dynamics
*********************************************************************/

// Collect effector forces for vehicle or forces from outside of jeod
vcollect sv_dyn.body.collect.collect effector forc
CollectForce: :create {

sv_dyn.force extern

b

// Collect dynamic environmental forces for vehicle
vcollect sv _dyn.body.collect.collect environ forc CollectForce::create

J/=m==mm=m——m————ee oo

// Torque collections

J/=m==mm=m——m————ee oo

// Collect effector torques for vehicle or torques from outside of
jeod

vcollect sv_dyn.body.collect.collect effector torg
CollectTorque: :create {
sv_dyn.torque extern

b

// Collect dynamic environmental torques for vehicle
vcollect sv _dyn.body.collect.collect environ torqg
CollectTorque: :create {

b

// SIM OBJECT: dynamics
// This sim object manages the key dynamic elements of the simulation.

sim object {

// Data structures

dynamics/dyn manager: DynManager manager;
dynamics/dyn manager: DynManagerInit manager init;
dynamics/body action: BodyAction * body action ptr;
Sim_services/include: INTEGRATOR integ;
utils/message: TrickMessageHandler msg_handler;

// Jobs registered for input file activation.
(0.0, environment) dynamics/dyn manager:
dynamics.manager.add body action/(

Inout BodyAction * body action = dynamics.body action ptr );

// Initialization Jjobs
P MNGR (initialization) dynamics/dyn manager:
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dynamics.manager.initialize model (
Inout INTEGRATOR * integ = &dynamics.integ,

In DynManagerInit & init = dynamics.manager init );

P _BODY (initialization) dynamics/dyn manager:
dynamics.manager.initialize simulation( );

// Derivative class Jjobs
P_MNGR Idynamics (derivative) dynamics/dyn manager:
dynamics.manager.gravitation( );

(derivative) dynamics/dyn manager:
dynamics.manager.compute derivatives( );

// Integration jobs
(integration) dynamics/dyn manager:
dynamics.manager.integrate (
Inout INTEGRATOR * integ &dynamics.integ,
In double sim time0 = sys.exec.out.time,
Inout TimeManager & time mgr time.manager );

} dynamics;

integrate (DYNAMICS) dynamics;
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