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ABSTRACT
With the ubiquitousness of mobile smart phones, health researchers
are increasingly interested in leveraging these commonplace de-
vices as data collection instruments for near real-time data to aid
in remote monitoring, and to support analysis and detection of pat-
terns associated with a variety of health-related outcomes. As such,
this work focuses on the analysis of GPS data collected through
an open-source mobile platform over two months in support of a
larger study being undertaken to develop a digital phenotype for
pregnancy using smart phone data.

An exploration of a variety of off-the-shelf clustering methods
was completed to assess accuracy and runtime performance for a
modest time-series of 292K non-uniform samples on the Stampede2
system at TACC. Motivated by phenotyping needs to not-only
assess the physical coordinates of GPS clusters, but also the ac-
cumulated time spent at high-interest locations, two additional
approaches were implemented to facilitate cluster time accumula-
tion using a pre-processing step that was also crucial in improving
clustering accuracy and scalability.
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digital phenotype, GPS, clustering, time locality, machine learning,
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1 INTRODUCTION
The significantly sharp increase in healthcare costs over the past
decades has pushed the technological development of more efficient
and effective ways of decreasing these costs through innovation.
While the United States has higher health care costs than any other
developed country in the world, the quality of service received
is classified as marginal by almost any metric [20]. The process
of using digital phenotyping to aid in individualizing heathcare
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offers the potential to lower costs by catering to specific trends and
to avoid lumping people into generalized classes of care that risk
providing the wrong support.

Digital phenotyping is the collection and processing of data with
the purpose of building an individual picture of a participant to
help study patterns and trends. Today, data generated passively
by a single modern smartphone includes time-stamped location
coordinates, accelerometer data, attitude/pressure measurements,
and phone usage activity to name a few. While the larger scope
of digital phenotyping is to apply the method onto any number of
health trends, the purpose of this work is in support of phenotyping
observations sampled throughout a woman’s pregnancy.

While many sensors are available for use, a significant data
stream of interest to characterize a users mobility effectively is
their location as a function of time, typically inferred through a
combination of GPS and cell phone signal triangulation. The loca-
tion of a person over time can be used to calculate data such as
user mobility, time spent traveling, and general location relative to
points of interest. The location data passively generated by mobile
phones is also one of the most context aware, densely packed data
streams provided. Accurately processing and classifying location
data in a scalable fashion is deemed a necessary step to support an
ongoing research project targeting a mobile-health study of preg-
nancy for 1,000 women in the central Texas area [4]. Consequently,
the work detailed in this paper is focused on the evaluation and
development of analysis techniques for discerning spatial clusters
derived from mobile sensor location data from a two month period
using the Beiwe Research Platform [1][29].

Since the focus is specifically on user location data, an explo-
ration of clustering methods provided several challenges that were
ultimately overcome using a more context-sensitive approach. In or-
der to ascertain time spent at statistically generated high-frequency
locations, which the use of off-the shelf clustering methods did
not provide directly, a need to relate time and space through some
method manifested. General clustering methods motivated the use
of pre-processing which increased the quality and scalability of the
clustering of user generated location data.

2 CHALLENGES
Location data collected passively from smart phones, from a variety
of hardware and operating systems, has a large variance in quality
and time-to-log consistency. Determining high-frequency locations
and time spent at those locations will vary based on the inaccuracy
of the data and whether it is processed or filtered in the final results.
Location data in general, and the specific data that was collected
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for this study, had sources of noises and challenges that can be
categorized as follows:
• The collected sample dataset includes international and do-
mestic GPS points, resulting in large errors in most cluster-
ing algorithms, especially when using standard normalizing
methods.
• The application would stop collecting GPS data if there was
not a geo-location refresh event, causing periodic gaps in
data collection.
• The number of samples in a time interval varied widely,
which made using the number of samples collected as a
density function a challenge. The daily variation of sample
frequency may be seen in Figure 1.
• The location accuracy and precision varies between mobile
devices, which was characterized and captured for each sam-
ple, but the estimate of accuracy still varied and had to be
taken into account.
• When calculating the distance between two location coor-
dinates, a simple Euclidean distance metric can be used to
approximate a flat earth model. Normalizing the raw coordi-
nate data, as is typically done with clustering algorithms, is
a possible source of cluster accuracy error, especially when
the distance between points are large.

Figure 1: Location data points aggregated by day over the
course of the experiment. The number of samples collected
per day varies greatly.

3 EXPLORATION OF TRADITIONAL
CLUSTERING METHODS

Over the course of the full study more than a thousand participants
will be evaluated, and each user’s 10 months worth of data will be
collected with the goal of building a digital signature. The sample
dataset used in this paper is a fraction of what will be processed for
the full study, roughly 5000 times smaller. Therefore, choosing a
scalable clustering method that used a resource-constrained model
and kept accuracy errors to a minimum was a basic requirement.
Accuracy evaluation, described in more detail later, must take into
account properly ranked frequented locations based on how long
is spent at the position. Performance and scalability were key, but
the time to develop, continued maintenance, and portability were
all equally evaluated and weighted. A decision was made to use
containers and develop software using Jupyter notebooks for these
reasons, which pushed for the use of high performance libraries de-
veloped in Python. Several off-the-shelf clustering algorithms exist

in the scikit-learn package for python[24], and makes for efficient
exploration and benchmarking on chosen datasets, while meeting
many of the requirements listed above. In order to test performance
and scalability on the relevant data patterns, a basic approach of
simply feeding the location data into the clustering methods pro-
vided by scikit-learn produces cluster information immediately and
provides guidance on which is likely to meet the rest of the require-
ments for the study. A brief description of the clustering methods
used in this exploration, including their frequently cited benefits
and drawbacks, are found in the following list.

Mini Batch K-Means - A variant of K-Means, with the addition
of using batches of sub-sampled data to decrease the computation
time and memory overhead by reducing distance between points.
Using the batch scheme typically converges faster than K-Means,
but at a cost of the cluster quality. Another downside to this algo-
rithm, for our purposes, is that it requires a number of clusters to be
provided beforehand. The implementation of Mini Batch K-Means
in the scikit-learn package also restricts the process to a single
process/thread, which may not scale.

AffinityPropagation - Amethod that clusters by placing points
into categories and then updating the central cluster point (and
the relationship others) as the algorithm progresses. The time and
memory complexity of this algorithm proves to be a challenge for
larger data sets, along with the restriction to a sequential process.

Mean-Shift - An iterative sliding-window centroid finding al-
gorithm, where a calculated center point is evaluated and updated.
Also, guaranteed to converge to a solution, in addition the num-
ber of iterations are typically reduced using a tolerance threshold.
Although, the Mean-Shift implementation in scikit-learn also al-
lows for multiple processes to be created which, in theory, will be
scalable, but the time complexity is a significant issue to overcome.

Spectral Clustering - The method applies a K-Means cluster-
ing method to a projected normalized Laplacian after finding the
restricted domain eigenvectors. Since this algorithm uses K-Means,
it requires the number of clusters to be provided as input, which is
a challenge. Unlike Mini Batch K-Means, the method has a large
time and memory complexity, but does allow for parallel tasks be
initiated.

Ward Hierarchical Clustering - Is part of a general family of
algorithms that build trees of clusters by merging or splitting based
on the function criteria. Specifically, Ward minimizes the sum of
squares between points within the cluster. Themethod also does not
allow for parallel tasking, which reduces an easy implementation
of a scalable function.

Average Agglomerative Clustering - Like the Ward Hierar-
chical method, it is part of a hierarchical class of algorithms. The
Average linkage minimizes the average distance between points
within the cluster. Unfortunately, this method also requires that
the number of clusters as input. As with Ward, the Average Ag-
glomerative Clustering method also does not allow for parallel
tasking.

DBSCAN (Density-Based Spatial Clustering ofApplications
with Noise) - Similar to Mean-Shift in the way that it picks a point
in the data and finds the nearest neighbors, and if there are enough
points to be considered a cluster, it will start to accumulate densely
packed points nearby. While some DBSCAN implementations claim
to have a linear memory complexity, the version contained in the
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version of scikit-learn used in this experiment shows strong qua-
dratic scaling in most cases. Fortunately, the scikit-learn version of
DBSCAN does have the ability to parallelize tasks.

OPTICS (Ordering Points To Identify theClustering Struc-
ture) - A generalization of DBSCAN and instead of a full distance
matrix, a reachability graph is used to order points. OPTICS is com-
monly recommended to be used instead of DBSCAN if the sample
size is large, as the worst case memory usage is linear since the
method only loads in a fraction of the data set at a time. As an
aside, HDBSCAN is another alternative to OPTICS and DBSCAN,
but displays similar memory complexity as DBSCAN, which is
unscalable.

BIRCH (Balanced Iterative Reducing and Clustering us-
ing Hierarchies) - A Clustering Feature Tree is built by capturing
characteristics of the data distribution of the clusters such as num-
ber of points in the cluster, linear sum of data points, and the square
sum of all points within the cluster. A commonly sited downside to
BIRCH is the computational complexity scaling with the number
of clusters. BIRCH also requires an input of the number of clusters.

Gaussian Mixture Model - The scikit-learn implementation
uses the expectation-maximization algorithm to fit the Gaussian
Mixture Model input data set. A known issue with this method
is that it diverges in some situations and requires a certain level
of heuristics to properly converge. Since GMM models generalize
K-means, the number of clusters are a priori knowledge. As well,
GMM does not allow for easy parallelism.

3.1 Theoretical Complexity of Standard
Clustering Methods

Since clustering arbitrary points is inherently NP-hard, the methods
used to solve this problem are complex and performance will be
based on many variables found in the context of the input data.
Certain datasets will cause memory or time complexity variation,
which is outside of the scope of this experiment as we focus on
a single salient dataset related to future experiments. As such, a
simple study and rough characterization of the theoretical complex-
ities for these common algorithms can be found in Table 1. Note,
that the average evaluation for memory and time complexity in the
table is more closely related to an average over general datasets,
not an average evaluated on location coordinates.

3.2 Normalization of Location Data
In many clustering algorithms, and machine learning methods in
general, a normalization of the input data takes place beforehand.
By using a standard scaling function, such as z = (x − u)/s , where
u is the mean and s is the standard deviation, the data can be
transformed to use standard clustering techniques applied to many
general sets of data. A comparison of using raw versus normalized
coordinates was performed, but a normalization method to signifi-
cantly improve either accuracy or runtimes for the location data
provided could not be found. All reported results are specifically
created using raw coordinates and a geodesic distancemeasurement
when available, since this provided the best results.

4 USE OF TIME LOCALIZATION
All of the methods described so far had issues producing accurate
results in a timely and scalable manner, although each method was
restricted to only two dimensions. An attempt to build a custom dis-
tance metric, which included time as a weighted input to replace the
standard metric for each off-the-shelf clustering algorithm, never
improved accuracy or computational performance. Since there was
no theory found in literature review to build this monotonically
increasing metric based on time and space, while also accounting
for challenges listed in section 2, a heuristic pre-processing ap-
proach was pursued. Two methods were developed to associate
time and space in the context of discrete location data collection.
Both methods improved scalability, but section 4.2 covers the al-
gorithm that also increased accuracy on general location datasets
drastically. The Intertwined Time and Space pre-Processing method
also provided an excellent estimate of accumulated time, without
additional computation. The estimate on time spent at a particular
location provides an extra level of stability for the proper ranking
of frequently visited location.

4.1 Hierarchical Segmentation
Using the assumption that people will follow a daily cycle of move-
ment, one could group samples together by day or week and cluster
on that time period. Then using weighted centroids based on num-
ber of samples per day or week, an end level clustering algorithm
would be used to find clusters on the pre-processed data while
accumulating the number of samples and centroids of centroids
into the final results.

procedure HierarchicalSegmentation
main:

grouped locations← SplitByTime(locations)
goto loop.
labels← Cluster(accumulated centroids)
a ← accumulated centroids
b ← accumulated samples
x, y← CalcCentroids(label, a, b)
close;

loop:
labels← Cluster(grouped locations(i))
x, y← CalcCentroids(labels, grouped locations(i))
accumulated centroids← append(x)
accumulated samples← append(y)
i ← i + 1
if i != EOF then return
else goto loop.

4.2 Intertwined Time and Space Pre-processing
Intertwined Time and Space (ITS) pre-processing was approached
from the idea of perfect data. If location data collection over time
was continuous and without error, a simple difference over any
portion of the time parameterized line function would provide the
total time for that segment. Since the function provides a surjective
map from time onto location, one could also integrate over a re-
stricted space domain to find how much time was spent within that
region. Using this theoretical concept, with the addition of realistic
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Table 1: Clustering Methods

Clustering Method Memory
Complexity
(Worst)

Memory
Complexity
(Average)

Compute
Complexity
(Worst)

Compute
Complexity
(Average)

Mini Batch K-Means[10] O(const) O(const) O(K ∗ N ∗ I ) O(K ∗ N ∗ I )
Affinity Propagation[14] O(N 2) O(N 2) O(N 2 ∗ I ) O(N 2 ∗ I )
Mean-Shift [33] O(const) O(const) O(N 2 ∗ I ) O(N 2 ∗ I )
Spectral Clustering[32][16] O(N 2) O(N ∗M) O(N 3) O(N 3)
Ward Hierarchical Clustering[36] O(N 2) O(N 2) O(N 3) O(N 2)
Agglomerative Clustering[36] O(N 2) O(N 2) O(N 3) O(N 2)
DBSCAN [8] [27] O(N 2) O(N ∗ D) O(N 2) O(N ∗ loд(N ))
OPTICS [23] O(N ) O(N ) O(N 2) O(N ∗ loд(N ))
BIRCH[36][35] O(const) O(const) O(N ∗ K) O(N ∗ K)
Gaussian Mixtures[17][19] O(N 2) O(N ∗G) O(N ∗G ∗ I ) O(N ∗G)

1. D represents the average number of neighbors, K represents the number of clusters, I represents the number of iterations,
M represents the subset of sampled columns, G represents the number of Gaussian bases.
2. The Mini batch version of K-Means will load a constant subset of data for each batch.
3. The BIRCH algorithm can work with an arbitrary size of memory (within limit), although run time may be affected for
smaller memory.

heuristics to reduce incorrect data accumulation from imperfect
sources, the ITS pre-process procedure achieves scalable and so-
phisticated clustering accuracy. Since the pre-processing method
also calculates the time difference for each segment, an additional
metric is available besides sample accumulation, which proves to
be a useful and robust method to accurately rank high-frequency
locations. An illustration of the theory can be seen in Figure 2 and
a discretization view in Figure 3.

Figure 2: A theoretical continuous line representing the true
location of a user, split into segments that are within an ar-
bitrary radius R.

Figure 3: A representation of a discontinuous sampled set of
the estimated position of a user, again split into segments
within a radius.

procedure ITSPreProcess
main:

sorted locations← SortByTime(locations)
current ← 0
beдin ← 0
prev ← 0
goto loop.
labels← Cluster(relevant locations)
a ← relevant locations
b ← number of samples
c ← total time
x, y← CalcCentroids(label, a, b, cn)
close;

loop:
x ← sorted locations(current)
y ← sorted locations(begin)
z ← sorted locations(prev)
pxy ← Distance(y,x) < MaxPrecision(x ,y)
md ← Distance(y,x) < max allowable distance gap
mt ← TimeDiff(x , z) < max allowable time gap
mtd ← TimeDiff(z,y) > min time difference
mns ← prev - begin > min number of samples
if pxy or md or mt then

if mtd or mns then
start time← GetTime(y)
total time← TimeDiff(y, z)
number of samples← prev - begin
relevant locations← sorted locations (prev, begin)
centroid← CalcCentroid(relevantlocations)

beдin ← current

prev ← current
current ← current + 1
if current == EOF then return
else goto loop.
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5 RESULTS
Overall, the results vary in execution times and accuracy, with a
limited number of off-the-shelf algorithms performing well enough
to be considered for future use. One major weakness found in most
evaluated algorithms was seen in the severe drop in accuracy across
the board when clustering international data points as opposed to
just domestic in the small dataset. Based on the results, Mini Batch
K-Means performed substantially better than any off-the-shelf al-
gorithm, but still suffered from the lack of a time aggregate when
identifying high-frequency locations. The largest advantage the ITS
pre-process method provided was the estimated time spent at each
location, instead of using the number of samples as a weighting
factor.

5.1 Experimental Setup
Hardware to run experiments consisted of a single TACC Stam-
pede2 node, using dual 24-core Intel Xeon Platinum 8160 processors
and 192 GB of main memory. The operating system environment
consisted of Centos 7, running Singularity v2.1 and Jupyter v1.0.
The original container file was created for Docker v2.2 and later
converted to use Singularity. The software used to run the experi-
ments are Python v3.6.4, Scikit-learn v0.22.1, Pandas v1.0.1, NumPy
v1.18.1, and Matplotlib v3.1.3.

5.2 Clustering Methods Runtime
DBSCAN was unable to load the full dataset into memory to begin
processing, while Affinity Propagation and Spectral Clustering
algorithms failed to produce results due to an execution of over
eight hours. There is a large range of variability in the execution
time in Table 2. For instance, many of the methods took over an
hour to run on a relatively small dataset when compared to what the
overall study will be using, while some are under five seconds. The
Mini Batch K-Means method also displayed significant variability
when presented the two datasets, one of which is a subset of the full
dataset and processed for much longer than the full set. The likely
explanation of the significant non-linear performance is related to
the iterative nature of K-Means and the subsampling of the batch
process. The execution times showing significant changes based on
input data also encourage the use of a pre-processing method to
reduce the number and distance between points. As a note, in the
case of the two pre-processor methods, the final ranked locations
could not be realized without the use of a clustering algorithms
being run on the pre-processed data. Therefore, the full execution
time of both pre-processor and clustering method were combined
in the case of Hierarchical Segmentation and ITS algorithms.

5.3 Clustering Methods Accuracy
In order to judge accuracy for the particular dataset used in the
experiment, a priori knowledge of three ranked high-frequency
coordinate locations are used to measure against all centroids pro-
duced by the cluster algorithms. For the purposes of this experiment
the rank of the locations, based on time spent, is as important as
identifying the correct locations. Location differences used a stan-
dard GeoPy geodesic conversion from coordinates to meters, and
the predicted location must be within a 650 meter radius from the
center of the golden samples to be counted as a valid point. The ITS

Table 2: Clustering Methods Execution Time

Clustering Method Small Dataset Full Dataset
(seconds) (seconds)

Mini Batch K-Means 10.13 0.79
Affinity Propagation 96.43 DNF
Mean-Shift 10.27 5134.53
Spectral 61.77 DNF
Ward Hierarchical 4.57 720.09
Agglomerative 2.42 437.78
DBSCAN 3.66 OOM
OPTICS 18.03 4181.17
BIRCH 0.27 4.77
Gaussian Mixtures 0.12 4.60
Hierarchical Seg 298.53 7564.12
ITS 35.25 692.87

1. Results are the reported Python runtimes.
2. Affinity Propagation and Spectral Clustering had runtimes over several
hours when run on the full dataset.
3. DBSCAN was unable to load the full dataset into memory. 4. Bandwidth
estimation for Mean-Shift was added into final time.
5. Connectivity matrix generation time for Ward Hierarchical Clustering
method was added into final time.
6. 16000 records processed for the small dataset case and 292903 for the full
dataset.

pre-process method is split into two rows to highlight the advan-
tages of using an estimate of time as a metric instead of the number
of samples. As an aside, the ITS method provided points within a
300 meter radius.

5.4 Rank by Number of Samples or Estimated
Time Accumulated

In Figure 3, the only methodology that achieved perfect accuracy on
the full dataset was ITS, but only after the results had been sorted
based on the estimated time accumulated in that region. For reasons
unknown, the number of samples captured during international
travel accounted for 4% of the total number of samples in the dataset,
while the real time spent at this particular location is estimated
to be close to 2%. Compared with the third ranked location used
to measure accuracy, the number of samples came in at 4% with a
real time of closer to 4%. The number of samples in this situation
caused a false prediction of a high-frequency location due to the
variation of samples. The ITS pre-processing method provides an
accurate method in estimating the time spent at a location as a
trivial operation, leading to accumulation of time calculation for
clustering methods post-processing and ranking.

5.5 Parallelization
A small subset of clustering algorithms had the ability to easily par-
allelize the function using a parameter to enable multi-processes,
which only included Mean-Shift, Ward Hierarchical Clustering, Ag-
glomerative Clustering, DBSCAN, and OPTICS. As the data in the
figure 4 show, none of these algorithms had any noticeable speed-
up, and in fact a few displayed a slowdown. Reasonable efforts were
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Table 3: Clustering Methods Precision and Accuracy

Clustering Method Small Dataset Full Dataset

Mini Batch K-Means 2/2 2/2
Affinity Propagation 2/1 DNF
Mean-Shift 2/2 0/0
Spectral 0/0 DNF
Ward Hierarchical 2/2 0/0
Agglomerative 2/2 0/0
DBSCAN 2/2 OOM
OPTICS 2/2 1/0
BIRCH 2/2 0/0
Gaussian Mixtures 2/2 1/1
Hierarchical Seg 3/3 0/0
ITS 3/3 2/2
ITS Time Sorted 3/3 3/3

1. The small dataset only includes domestic location records, while the full
data set contains international coordinates.
2. P/Q results may be interpreted as P representing the number of
returning centroid coordinates within a 650 meter radius regardless of
ordering, while Q is the number of centroid coordinates within a 650 meter
radius and predicting the correct time-spent priority order.
3. Affinity Propagation and Spectral Clustering had runtimes over several
hours when run on the full dataset.
4. DBSCAN was unable to load the full data set into memory.
5. 16000 records processed for the small dataset case and 292903 for the full
dataset.
6. ITS Time Sorted ranks the results by the total time estimates instead of
the number of samples.

made to properly scale the out-of-box solutions, but any attempt
never resulted in a significant speedup. Thus, the motivation for
the proposed pre-processing ITS function as this scales while main-
taining accuracy. As mentioned in section 5.2, the execution times
and speedup recorded for Hierarchical Segmented and ITS methods
in Figure 5 and Table 4 include the final clustering step time as well
as pre-processing.

Figure 4: Strong scaling of off-the-shelf algorithms thatwere
trivial to add parallel functionality. Due to the extreme run-
times/memory constraints, the small dataset was used to
show speedup.

6 CONCLUSION
Testing several off-the-shelf clustering software solutionsmotivated
the search for an alternative method for consistent accuracy and

Figure 5: Strong scaling speedup of the total runtime, includ-
ing sorting and post-clustering steps, for Hierarchical Seg-
mented and ITS using the full dataset.

Table 4: Total Parallel Pre-processing with Final Cluster
Runtimes

Processes Hierarchical Segmented ITS
(seconds) (seconds)

1 7564.12 692.87
2 4482.26 419.15
4 2621.23 257.05
6 1950.88 191.32
12 1320.54 133.26
24 903.37 108.85
48 652.79 69.71

1. Results are the reported Python runtimes.

scalability. By exploiting the temporal locality that is inherently
structured within the captured location data, the quality of the
classification of high-frequency locations of particular users show
increased performance by using the ITS pre-processing method. A
more accurate and robust algorithm for calculating ranked high-
frequency locations can be had by relying on the estimated time
spent within a cluster, which is easily achieved using the ITS pre-
processing method, instead of the number of samples normally
provided by all other clustering methods. The new functionality
does this while keeping a relatively small time complexity and at
mostO(N )memory consumption. Since the pre-processing method
lends itself well to parallelization, the application of using this on
several thousand users is possible by scaling the hardware. Fu-
ture research will focus on adding more digital phenotyping data
characterization, with a requirement for scalable solutions.
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