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Abstract—Parallel systems that employ CPUs and GPUs
as two heterogeneous computational units have become im-
mensely popular due to their ability to maximize performance
under restrictive thermal budgets. However, programming
heterogeneous systems via traditional programming models
like OpenCL or CUDA involves rewriting large portions
of application-code. They also lead to code that is not
performance-portable across different architectures or even
across different generations of the same architecture.

In this paper, we evaluate the current state of two emerging
parallel programming models: C++ AMP and OpenACC.
These emerging programming paradigms require minimal
code changes and rely on compilers to interact with the
low-level hardware language, thereby producing performance-
portable code from an application standpoint. We analyze the
performance and productivity of the emerging programming
models and compare them with OpenCL using a diverse set
of applications on two different architectures, a CPU coupled
with a discrete GPU and an Accelerated Programming Unit
(APU). Our experiments demonstrate that while the emerging
programming models improve programmer-productivity, they
do not yet expose enough flexibility to extract maximum
performance as compared to traditional programming models.

Keywords: Programming models, performance, productivity,
evaluation, GPU, APU, OpenCL, OpenACC, C++ AMP

I. INTRODUCTION

The exigent demands of emerging applications to maxi-
mize performance while staying under power and thermal
constraints have made heterogeneous computing ubiqui-
tous [1, 2]. Heterogeneous systems have also been recog-
nized to play an important role on the path to extreme scale
computing as evident by the fact that half of the top ten
supercomputers on the Top500 list possess heterogeneous
capabilities [3]. Among various heterogeneous systems,
those consisting of a graphics processing unit (GPU) coupled
with a traditional CPU have emerged as the most popular
due to their remarkable performance-price ratio [4, 5].

GPU programming has made great advancements, from
requiring application developers to program geometric
shaders in assembly to the evolution of general-purpose
programming models like OpenCLTM [6]. However, these
programming models suffer from two major issues. First,
they require the use of explicit library calls and special
compute kernels which leads to rewriting large portions
of application-code, making the process sometimes infeasi-
ble. Second, they require architecture-specific optimizations

which leads to code that is not performance-portable across
different architectures like GPUs and multicore CPUs or
even across different generations of the same architec-
ture [7, 8]. The compound effect of these issues has inhibited
the widespread adoption of GPUs.

Emerging programming models such as C++ AMP and
OpenACC hold the promise of alleviating the bottlenecks
found in traditional GPU programming models [9–11]. Both
are high-level programming models which allow offloading
the parallel loops to GPUs. They use advanced language fea-
tures like pragmas and lambda functions in order to require
minimal changes to the source-code and rely on compilers to
generate the low-level GPU parallel code. Since the compil-
ers are now responsible for managing architecture-specific
data management and execution constructs, these emerging
programming models provide performance-portability across
a large sweep of architectures.

Heterogeneous computing systems are programmed us-
ing a combination of programming models referred to as
MPI+X [12], where MPI (or Message Passing Interface) is
the de-facto standard for managing inter-node execution and
‘X’ refers to the programming model for on-node parallel ex-
ecution such as OpenCL, C++ AMP and OpenACC. In this
paper, we evaluate and contrast the popular programming
models used for on-node execution in a high performance
computing (HPC) scenario. Previous research has compared
OpenACC and OpenCL but to the best of our knowledge, we
are the first to include C++ AMP in a comparative study of
GPU programming models. For evaluation purposes, we use
a diverse set of four hand-tuned scientific proxy applications
belonging to different domains and one micro-benchmark:
(i) LULESH, (ii) CoMD, (iii) XSBench (iv) miniFE, and
(v) an indigenous read-memory benchmark. We use two
different architectures to ascertain the portability aspect of
the programming models: a GPU coupled with a CPU
and an Accelerated Processing Unit (APU). We focus our
studies on programming models for a single-node as MPI
has been universally chosen in HPC to manage inter-node
communication in a multi-node environment.

Our metrics for holistically comparing the programming
models include performance, programmer-productivity and
the current state of their compilers. We present a perfor-
mance comparison of the programming models in both sin-
gle and double precision. We then compare the source lines



of code (SLOC) to deduce the approximate programmer-
productivity and also provide a qualitative description of the
application development process. This provides an idea of
the learning curve involved with each programming model as
lower SLOC does not always translate to higher productivity.
We also evaluate the programming models in terms of
the flexibility offered by their compilers in enabling the
application developer to optimize performance.

Our experiments demonstrate that OpenACC and
C++ AMP substantially lag behind OpenCL on the discrete
GPU because their compilers do not optimally manage the
data-transfers on a discrete GPU. However, for OpenCL the
programmer explicitly manages these data-transfers which
results in better performance. The APU mitigates the data-
transfer requirement and hence, provides a level-field for the
comparison of programming models. C++ AMP is the most
productive on APU on average and is as much as 3× more
productive than OpenCL. Of the two emerging languages
evaluated, C++ AMP is more promising and provides both
improved performance and productivity. Both OpenACC and
C++ AMP greatly improve programmer productivity but
their current compilers are not robust enough to contest the
performance of OpenCL. To provide a “best of both worlds”
scenario, AMD is developing Heterogeneous Compute, a
programming model which is highly productive while con-
sisting of a rich-set of features for performant programming.

The rest of the paper is arranged as follows. Section II pro-
vides a background on discrete GPU and APU. Section III
describes the three programming models that we evaluate.
Section IV presents the description of the proxy applications
followed by the experimental setup in Section V. Section VI
presents the comparative study of the programming mod-
els. Section VII briefly introduces Heterogeneous Compute.
Section VIII presents related work followed by conclusions
in Section IX.

II. HETEROGENEOUS COMPUTING SYSTEMS

This section presents an overview of the two heteroge-
neous computing systems that are used to evaluate various
programming models.

A. Discrete GPU paired with a CPU

A discrete GPU is a co-processor that resides on the
PCIe interface in a traditional CPU+discrete GPU setup, as
shown in Figure 1. The x86 cores and the host-memory
interfaces are part of the CPU core. A discrete GPU is
a separate physical entity with vector cores and its own
memory space, thereby requiring data to be first transferred
to its own memory before any computation can start. The
data-transfer requirement leads to significant bottlenecks for
certain classes of applications, like large-scale data analyt-
ics [13]. Therefore, only those applications which amortize
the cost of data-transfers benefit from GPU execution.
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Figure 1: High-level block diagram illustrating a CPU and discrete
GPU setup across PCI Express (PCIe).
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Figure 2: High-level block diagram of an AMD A10-7850K APU.

The current generation of AMD GPUs are made up of
one or more compute units (CUs). Each CU consists of
4 lanes of 16 ALUs which results in 64 GPU threads
being executed in a single-instruction-multiple-data (SIMD)
fashion. CUs also consist of parallel resources like registers
and a highly-banked local data store which are shared among
the threads executing on that CU. Discrete GPUs have
their own instruction set architecture (ISA) that is different
from the x86 ISA of CPUs, which has led to different
programming models for CPUs and GPUs.

B. Accelerated Processing Unit (APU)
An Accelerated Processing Unit (APU) is AMD’s imple-

mentation of the emerging heterogeneous system architec-
ture (HSA) [14]. Fundamentally, the APU combines scalar
x86 CPU cores and the vector GPU cores on the same
physical die. Figure 2 illustrates a high-level block diagram
of an AMD A10-7850K APU. The fused CPU and GPU
cores as well as an unified memory interface allow APUs to
eliminate the data-transfer requirement and also mitigate the
data-size limitation which the discrete GPUs suffer from.

Programming the APUs is similar to programming dis-
crete GPUs but with several advantages. Since the APUs
do not require data transfers and can directly work with
pointers, the host-code, if OpenCL is used, is much simpler
without the need for creating separate buffers and staging
data. For C++ AMP and OpenACC, the programmers can
omit any data-transfer code and rely on compilers to generate
code which does not perform any implicit data transfers.

III. PROGRAMMING MODELS

This section describes the three programming mod-
els that we compare - (i) OpenCL, (ii) OpenACC, and



1 function read-serial-CPU (in[], out[], size) {
2 // stream through the ‘in’ buffer
3 for i ∈ size, i + = BLOCKSIZE do
4 sum = 0.;
5 // compute the sum of BLOCKSIZE continuous elements
6 for j ∈ BLOCKSIZE do
7 sum += in[i + j];
8 end for
9 // write computed sum to ‘out’ buffer

10 out[i / BLOCKSIZE] = sum;
11 end for
12 }

(a) Read-memory Serial CPU

1 function read-openmp-CPU (in[], out[], size) {
2 /* OpenMP directives */
3 #pragma omp parallel for
4
5 // stream through the ‘in’ buffer
6 for i ∈ size, i + = BLOCKSIZE do
7 sum = 0.;
8 // compute the sum of BLOCKSIZE continuous elements
9 for j ∈ BLOCKSIZE do

10 sum += in[i + j];
11 end for
12 // write computed sum to ‘out’ buffer
13 out[i / BLOCKSIZE] = sum;
14 end for
15 }

(b) Read-memory OpenMP CPU

Figure 3: Pseudocode for serial and OpenMP CPU implementations
of the read-memory benchmark.

(iii) C++ AMP. We use a simple read-memory benchmark
to illustrate the differences in these programming models.
The read-memory benchmark streams through a region
of memory and computes the sum of a block of continuous
elements. The block size of 64 is used for our experiments.
The computed sum is then written to an output buffer
to ensure that the compiler does not optimize out the
code. The pseudocode for serial CPU implementation of
the read-memory benchmark is shown in Figure 3a. The
OpenMP implementation on the CPU is straightforward and
just adds one line to include the parallel OpenMP pragma,
as shown in Figure 3b.

A. OpenCL

The OpenCL programming model was a giant leap to-
wards improving the productivity of GPU application de-
velopers. OpenCL programs consist of separate host and
device components, as shown in Figure 4. The host code runs
on the CPU and is used to initialize the OpenCL runtime
which involves creating GPU contexts, command queues
and compiling code. All GPU memory allocations and data
transfers are also done from the host code. When a discrete
GPU is used, explicit data transfers to the GPU memory are
required. Once the data is staged for execution, a GPU kernel
is launched with the required number of threads. Figure 4a
shows the host code for the read-memory benchmark.

The device code consists of kernels, which are functions
that run on the GPU. Each kernel consists of one- to three-
dimensional matrix of threads known as workgroups. All
the threads in a workgroup are executed on one compute

1 function read-opencl-host (in[], out[], size) {
2 // OpenCL boilerplate code to initialize device, context,
3 // command queues and compile kernels, etc.
4 InitCl();
5 // create OpenCL ‘cl_mem’ buffers
6 CreateClBuffer(in_cl[], out_cl[], size);
7 // copy data into GPU memory if on discrete GPU
8 CopyClDataToGPU(in[], in_cl[], out[], out_cl[], size);
9 // set OpenCL kernel arguments

10 SetCLKernelArgs(in_cl[], out_cl[], size);
11 // compute number of threads to launch on the GPU
12 numGPUThreads = size / BLOCKSIZE;
13 // launch OpenCL kernel
14 LaunchKernel(kernelName, numGPUThreads);
15 // copy data back to host memory if on discrete GPU
16 CopyClDataToHost(out[], out_cl[], size);
17 }

(a) Read-memory OpenCL - Host CPU

1 function read-opencl-GPU (in[], out[], size) {
2 // compute global thread id
3 int tid = get_global_id(0);
4 int st_idx = tid * BLOCKSIZE;
5
6 sum = 0.;
7 // compute the sum of BLOCKSIZE continuous elements
8 for j ∈ BLOCKSIZE do
9 sum += in[st_idx + j];

10 end for
11 // write computed sum to ‘out’ buffer
12 out[tid] = sum;
13 }

(b) Read-memory OpenCL - Device GPU

Figure 4: Pseudocode for host and device OpenCL implementation
of the read-memory benchmark.

unit in entirety and can synchronize among each other.
The pseudocode for the GPU kernel for read-memory
benchmark is shown in Figure 4b. From the figure, we
first compute the ID for every thread. The thread_id is
used to find the start-index for that thread in the memory
region. Each thread then accesses the BLOCKSIZE number
of contiguous elements, sums them and writes the output to
memory. The GPU kernel is similar to the serial CPU code
without the top-level for loop.

OpenCL incurs a significant overhead of rewriting appli-
cations because of the requirement to create segregated host
and device code as well as to explicitly allocate data and
stage them in GPU memory. Moreover, the GPU kernels are
required to be tuned for a particular architecture in terms of
how they access data and take advantages of different micro-
architectural features to achieve optimal performance. The
combined effects of these inhibit the performance portability
of OpenCL. However, the ability to write hand-tuned kernel
code usually results in better performance than compiler-
generated kernels, as will be shown in Section VI.

B. OpenACC

OpenACC is an accelerator programming interface that
provides OpenMP-like compiler directives to annotate code.
The programmer can define compute and data regions,
which are then offloaded to GPUs for execution. OpenACC
substantially boosts programmer productivity as implement-
ing GPU applications only requires annotating the code



1 function read-openacc-GPU (in[], out[], size) {
2 // copy data into GPU memory if on discrete GPU
3 CopyAccDataToGPU(in[], out[], size);
4 /* OpenACC directives */
5 #pragma acc kernels loop \
6 gang(size/BLOCKSIZE) vector(BLOCKSIZE) independent
7
8 // stream through the ‘in’ buffer
9 for i ∈ size, i + = BLOCKSIZE do

10 sum = 0.;
11 // compute the sum of BLOCKSIZE continuous elements
12 for j ∈ BLOCKSIZE do
13 sum += in[i + j];
14 end for
15 // write computed sum to ‘out’ buffer
16 out[i / BLOCKSIZE] = sum;
17 end for
18 }

Figure 5: Pseudocode for OpenACC implementation of the read-
memory benchmark.

without any major structural changes. OpenACC relies on
the compiler to generate low-level GPU programs using the
hints provided by the programmer.

The OpenACC implementation of the read-memory
benchmark modifies the OpenMP CPU implementation, as
shown in Figure 5. The kernels directive is used to
identify the parallel loops which should be executed on
the GPU. Once the loops are identified, the number of
GPU threads are computed and passed to the gang and
vector clauses. The number of gangs and vectors map
to the number of workgroups and threads per workgroup,
respectively, in the OpenCL parlance. The parallel loops
around the kernels directive maps to the low-level kernel
functions executed on the GPU. Several other clauses can
be passed to the kernels directive to optimize the data
management schemes chosen by the compiler including
transferring data to the GPU memory only if required.
OpenACC also provides a data directive which is used
to decouple data movement to GPU memory from compute
regions and is particularly useful on discrete GPUs.

From the pseudocode for OpenMP and OpenACC (Fig-
ures 3b and 5), we note that both of them lead to similar ap-
plication code barring the code for data movement required
for OpenACC. Therefore, OpenACC makes it significantly
easier to accelerate existing applications on GPUs. Ope-
nACC also generates performance-portable code because
the compiler can identify the underlying GPU architecture
and generate appropriate code for that particular architec-
ture. However, OpenACC lacks the flexibility provided by
OpenCL to develop hand-tuned kernels. Several features like
fine-grained synchronization primitives and the ability to
explicitly use local data store on the GPU are also missing
in OpenACC, which adversely affect performance.

C. C++ AMP

C++ AMP is an open standard which was proposed as a
productivity focussed alternative to low-level GPU program-
ming models like OpenCL. C++ AMP is a combination of

1 function read-cppamp-GPU (in[], out[], size) {
2 // copy data into GPU memory if on discrete GPU
3 CopyAmpDataToGPU(in[], out[], size);
4 // compute number of threads to launch on the GPU
5 extent<1> numGPUThreads(size / BLOCKSIZE);
6 /* C++ AMP lambda function */
7
8 // stream through the ‘in’ buffer
9 parallel_for_each(numGPUThreads.tile<tile-size>(),

10 [=] (tiled_index<tile-size> t_idx) restrict (amp) {
11 // compute global thread id
12 int tid = t_idx.global[0];
13 int st_idx = tid * BLOCKSIZE;
14
15 sum = 0.;
16 // compute the sum of BLOCKSIZE continuous elements
17 for j ∈ BLOCKSIZE do
18 sum += in[st_idx + j];
19 end for
20 // write computed sum to ‘out’ buffer
21 out[tid] = sum;
22 } end parallel_for_each
23 }

Figure 6: Pseudocode for C++ AMP implementation of the read-
memory benchmark.

library and extensions to the C++-11 standard. C++ AMP
requires similar programming efforts as OpenACC for devel-
oping GPU applications but supports the rich-set of object-
oriented features like templates, abstract data types and the
standard template library (STL).

The C++ AMP implementation of the read-memory
benchmark is shown in Figure 6. Once the data is transferred
to GPU memory, as required, an extent is created to
define the dimensions and the number of GPU threads. The
code is annotated using a parallel_for_each function
template, which is a lambda function that is used to identify
the region of code to be executed on the GPU. The code
encompassed within the parallel_for_each construct
is almost identical to the GPU kernel for OpenCL, shown
in Figure 4b. An extent of threads is divided into tiles
which map to the OpenCL workgroups. C++ AMP provides
APIs to query the IDs for tiles and threads which are used
to compute the working set for each thread.

C++ AMP bridges the gap between OpenCL and Ope-
nACC by providing the flexibility found in OpenCL along
with the ease of programming of OpenACC. C++ AMP
provides sufficient control to the programmer to optimize
data management and execution while requiring minuscule
code changes. C++ AMP also supports fine-grained synchro-
nization primitives and allows the use of local data store by
introducing a tiled_static storage class, which were
missing in OpenACC.

IV. PROXY APPLICATIONS

This section presents an overview of the four proxy appli-
cations that are used to compare the programming models.
Table I shows the application characteristics and Figure 7
demonstrates how their performance scales with memory
and core frequencies on a GPU, thereby providing an insight
into the application’s compute and bandwidth requirements.



Our test-suite consists of applications belonging to different
domains in HPC and possess inherently different memory
and compute and bandwidth characteristics.

For an explanation and verification of our methodol-
ogy, we show the performance of read-benchmark
at various core and memory frequencies in Figure 7a.
Read-benchmark is a memory intensive application, as
described in Section III and hence, its performance scales
with the increase in memory frequency; the best performance
is achieved at 1250 MHz. The change in core frequency
does not affect performance at lower memory frequencies.
However, at higher memory frequencies, performance scales
with the core frequency to an extent until the L2 cache starts
to become optimally used. At lower core frequencies, not
enough memory requests are generated to efficiently utilize
the L2 cache shared by the GPU compute units.

A. LULESH

LULESH is a shock hydrodynamics proxy application
that solves the spherical Sedov blast problem using La-
grange hydrodynamics. LULESH is an iterative application
and proceeds as follows: initialize spatial domain, advance
node quantities, advance element quantities, and update
time constraints. Advancing the node quantities is the most
computationally intensive part of the simulation.

LULESH contains a large number of parallel loops re-
sulting in 28 different kernels which makes it amenable for
parallelization on both APUs and discrete GPUs. LULESH
also portrays good data locality as shown by the low miss
rate in the last level cache in Table I. Figure 7b demonstrates
the performance of LULESH at varying core and memory
frequencies. From the figure, it can be seen that LULESH
is a balanced application; its performance scales with both
memory and core frequencies.

B. CoMD

CoMD is a molecular dynamics proxy application which
performs atomic-scale simulation by solving the Newton’s
laws between particles. In CoMD, every particle interacts
with all other particles within a set cutoff distance to
simulate the deformation of materials in extreme environ-
ments. CoMD is an iterative application which proceeds
by computing forces between the particles followed by an
update to velocities and positions. Computation of forces
accounts for more than 90% of total execution time and
hence, is the critical part of the application.

Computing the forces between particles is a data-parallel
operation and hence, suitable for GPU acceleration. This
application does not demonstrate high data-reuse as shown
by the relatively high last-level cache-miss rate in Table I.
CoMD is a compute bound application as shown in Fig-
ure 7c. The performance of CoMD scales almost linearly
with the increase in core frequency. Whereas, the change in
memory frequency does not affect its performance.

Table I: Characteristics of Proxy Applications

Application Last-Level Instructions Number of BoundednessCache Miss Rate Per Cycle (IPC) Kernels
LULESH 11% 0.65 28 Balanced

CoMD 26% 0.69 3 (LJ) Compute
XSBench 53% 0.14 1 Compute
miniFE 39% 0.88 3 Memory

Command Line Parameters
LULESH ./LULESH -s 100 -i 100

CoMD ./CoMD -x 60 -y 60 -z 60
XSBench ./XSBench -s small
miniFE ./miniFE -nx 100 -ny 100 -nz 100

C. XSBench

XSBench computes the intensive macroscopic neutron
cross-section lookup and particle transport simulation. XS-
Bench works with the Hoogenboom-Martin reactor material
properties data-set and creates a random set of energy and
material pairs representing particle or material interactions.
The pairs are then used to lookup cross-section probability.

XSBench manifests poor data-locality as shown by the
high last-level cache misses in Table I. The data-locality is
so appalling that any increase in memory bandwidth does not
affect application performance (shown in Figure 7d) which
also results in poor instructions per cycle (IPC). Similar to
CoMD, XSBench is a compute bound application; there is
a steady increase in performance with the increase in core
frequency, except at extremely low memory frequencies at
which the memory requests are not optimally serviced.

D. miniFE

miniFE is a finite element proxy application that solves
a sparse linear-system using a simple un-preconditioned
conjugate-gradient (CG) algorithm. Once the element-
operators are generated and assembled into a sparse matrix
and vector, miniFE executes the following kernels until
the solution converges: sparse matrix-vector multiplication
(SpMV), axpy and dot product. Among the different kernels,
SpMV is the most computationally intensive. We use the
CSR-Adaptive algorithm to compute SpMV [15].

Figure 7e illustrates the performance of miniFE at varying
core and memory frequencies. miniFE portrays initial signs
of compute boundedness but quickly establishes itself as a
memory-bandwidth bound application once enough compute
resources are present to saturate the L2 cache on the GPU.
miniFE also demonstrates high IPC, as shown in Table I,
thereby validating that the higher core frequency correlates
to higher performance.

V. EXPERIMENTAL SETUP

We used the AMD A10-7850K APU and the AMD
RadeonTMR9 280X discrete GPU to compare the program-
ming models. The discrete GPU was paired with an AMD
A10-7850K APU as the host processor1. The hardware
specifications of these platforms is shown in Table II.

1the integrated GPU on APU was not used in APU+discrete GPU setup
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Figure 7: Normalized performance of proxy applications with varying core and memory frequencies on a GPU using OpenCL.

The software environment consists of Ubuntu 14.04 with
Linux kernel 2.17. Different programming models used
different compilers and runtimes which are presented in
Table III. C++ AMP required different runtimes on the APU
and the discrete GPU. We used the HSA software stack v1.0
on the APU [16] and the AMD CatalystTMsoftware stack
v14.6 on the discrete GPU.

Table II: Hardware Specification of Accelerators

Name AMD RadeonTM R9 280X AMD A10-7850K
Stream Processors 2048 768
Compute Units 32 12 (4 CPU + 8 GPU)
Core Clock Frequency 925 MHZ 720 MHZ
Memory Bus type GDDR5 DDR3
Device Memory 3 GB 2 GB
Local Memory 64 KB 64 KB
Peak Bandwidth 258 GB/s 33 GB/s
Peak Single Precision Perf. 3800 GFLOPS 738 GFLOPS
Host Processor AMD A10-7850K AMD A10-7850K
CPU frequency 3.7 GHZ 3.7 GHZ
System memory 32 GB 32 GB

Table III: Compilers Used for Programming Models

Programming Model Compiler
OpenCL AMD CatalystTMdriver v14.6

C++ AMP CLAMP v0.6.0 [9]
OpenACC PGI v14.10 with AMD Catalyst driver v14.6

VI. RESULTS AND DISCUSSION

This section presents the analysis on performance, pro-
ductivity and the ease of optimizations offered by various
programming models.

A. Performance

Figures 8 and 9 demonstrate the performance of proxy
applications implemented and hand-tuned in three pro-
gramming models on the APU and the discrete GPU,
respectively, compared to 4-core OpenMP implementation.
Read-benchmark being an extremely simple kernel is an
apt choice to understand the quality of code generation by
the compilers of emerging programming models compared
to OpenCL. Figures 8a and 9a depict the comparison of
kernel execution times in read-benchmark on the APU
and discrete GPU, respectively. The data-transfer times, if
any, were left out in order to only focus on the low-level code
that executes on the GPU. From the figures, it can be noted
that OpenCL performs the best and is better than C++ AMP
and OpenACC by 1.3× and 2×, respectively. This shows
that C++ AMP generates relatively better low-level code
than OpenACC when only the GPU kernel performance is
considered, without any host-side overhead. The difference
in speedups between APU and discrete GPU compared
to the OpenMP CPU implementation is due to an order
of magnitude more bandwidth available on the discrete
GPU which attests to the performance portability of these
programming models.

Figures 8b and 9b shows the performance comparison of
LULESH. From the figures, OpenCL performed the best
on both the APU and the discrete GPU. Both C++ AMP
and OpenACC achieved similar performance on the APU.
However, on the discrete GPU, C++ AMP performed poorly
because we were able to implement only 27 out of the 28
kernels on the GPU due to a compiler bug; one kernel was
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Figure 8: Performance comparison of programming models on AMD A10-7850K. Baseline: 4-core OpenMP CPU implementation.
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Figure 9: Performance comparison of programming models on AMD Radeon R9 280X. Baseline: 4-core OpenMP CPU implementation.

implemented on the CPU which led to data-transfer over-
head. The performance of emerging programming models
can be improved if the programmer is allowed to manually
control the data-transfers rather than relying on the compiler.

Figures 8c and 9c shows the performance comparison
of CoMD. Overall, OpenACC demonstrated the worst per-
formance on both architectures because of the compiler’s
inability to expose vector-parallelism in the accelerator code.
C++ AMP performed better than OpenACC but was out-
performed by OpenCL. Since CoMD is a compute bound
application, its performance scaled up when running on the
discrete GPU for both OpenCL and C++ AMP, thereby
demonstrating performance portability. The significant per-
formance difference between single- and double-precision
across all programming models is due to the lower double-
precision compute throughput which is 1/16th on the APU
and 1/4th on the discrete GPU.

XSBench uses a configurable lookup-table size which
was set to 240 MB for our experiments because of the
problem-size limitation imposed by the discrete GPUs; the
next step in the lookup-table size was 5 GB. Moving this
lookup-table to the GPU memory accounts for a significant
amount of total execution time. Figures 8d and 9d shows the
performance comparison of XSBench. C++ AMP resulted in
the best performance on the APU. However, on the discrete
GPU, the OpenCL implementation performed the best with
an improvement of up to 2× over the other programming
models. C++ AMP resulted in poor performance on the
discrete GPU than the APU which is atypical for a compute
bound application. This demonstrates that on architectures
which do not impose data-transfer requirements, the emerg-

ing programming models generate better low-level code and
can provide promising performance improvements.

miniFE is a memory bound application which implies
that high bandwidth memory will impact the performance
the most. This is attested by Figures 8e and 9e which
show the performance comparison of miniFE. On the APU,
OpenMP and all other programming models are limited to
the same host-memory bandwidth due to which OpenCL
and C++ AMP just match OpenMP’s performance. Whereas,
the OpenACC implementation results in a slowdown. Both
OpenCL and C++ AMP implementations scale with im-
proved memory bandwidth on the discrete GPU, thereby
demonstrating performance portability. OpenACC performs
the slowest because specialized sparse matrix operations
cannot be easily expressed at a high level, and the compiler
is unable to recognize and take advantage of the complicated
memory access patterns.

Observations: Our experiments illustrate that the emerg-
ing programming models match the performance and at
times even outperform a low-level programming model like
OpenCL. We summarize our observations as following.

• C++ AMP outperformed OpenACC in most cases.
• OpenCL was best for compute-bound applications due

to suboptimal vectorization by other compilers.
• C++ AMP performed the best on the APU for applica-

tions which incurred large data-transfers cost.
• The emerging programming models are slower than

OpenCL on discrete GPUs because compiler-generated
code for data-transfers performs worse than explicit
programmer-written code.



• OpenCL requires hand-tuned code for each architecture
for performance portability. Whereas, the emerging
programming models do not require any modification
to the code, as shown by the performance improvement
in all cases when moved from APU to discrete GPU.

B. Productivity

Table IV shows the number of lines of code that were
added to implement the applications in various programming
models starting from the serial CPU implementation. The
number of lines were measured using the SLOCCount tool
which does not consider the comments in the code [17].
The source lines of code provide an intuition regarding the
productivity associated with each programming model.

The read-benchmark shows that OpenCL requires 4×
more lines of code than both C++ AMP and OpenACC.
OpenCL implementations of the proxy applications also
resulted in an order of magnitude more lines of code.
The only exception is LULESH, which required almost
similar number of lines of code across all the programming
models. The OpenCL implementation of XSBench sub-
stantially deteriorated productivity by requiring more lines
of code modified than were present in the original serial
CPU implementation. Among all the programming models
examined, OpenACC required minimal changes to the serial
code. C++ AMP came a close second by requiring 15%
more changes on an average than OpenACC.

Merely considering the source lines of code alone does not
provide a legitimate estimate of the productivity associated
with programming models. Therefore, we compute produc-
tivity as a function of speedup and the ratio of number of
lines across all the three programming models to deduce
which provides the “biggest bang for buck”. The speedup
is computed as the ratio of the execution times of OpenMP
implementation on the CPU and each programming model.

productivityprog model =
(timeOMP /timeprog model)

(linesprog model/linesOMP )
(1)

Productivity, as defined above, is depicted in Figure 10
for double-precision implementation of the proxy appli-
cations. We chose double-precision because that is most
relevant from a scientific application standpoint in HPC.
The emerging programming models are more productive
than OpenCL on multiple occasions on the APU, as shown
in Figure 10a. This is because the emerging programming
models provide comparable performance to OpenCL albeit

Table IV: Source Lines of Code Changed Starting from the CPU
Serial Implementation [17]

Application OpenMP OpenCL C++ AMP OpenACC
read-benchmark 3 181 42 40
LULESH 107 1357 1087 1276
CoMD 23 3716 188 183
XSBench 13 1468 83 113
miniFE 18 2869 260 43

requiring considerably less lines of code. C++ AMP results
in best productivity on average and is 3× more productive
for XSBench on the APU.

OpenCL provided substantially better performance on
the discrete GPU and hence, it is worthwhile to undergo
the arduous programming effort and still achieve better
productivity with OpenCL, as shown in Figure 10b.

If learning curve is to be considered, OpenACC was the
most straight-forward given its resemblance to OpenMP.

C. Ease of Optimizations

Figure 11 illustrates the features available in the program-
ming models to assist in tuning application-performance
either by manual intervention or by providing hints to the
compiler. OpenCL provides the maximum flexibility to tune
GPU code by allowing the programmers to write hand-
tuned kernels. OpenCL allows for the use of the local-data-
store (LDS) as well as unrolling loops to improve kernel
performance. The programmer can also reduce loop invariant
code motion by manually moving code and transform data-
structures to perform efficient memory accesses.

Amongst the emerging programming models, OpenACC
is the least flexible and does not provide access to ad-
vanced tuning features like the use of LDS. OpenACC also
proved challenging in terms of mapping the parallelism
to appropriately use GPU vector cores. OpenACC also
does not provide synchronization primitives which inhibits
implementing complex applications.

C++ AMP provides the use of tiling which leads to
improved vectorization and better performance. For exam-
ple, exposing parallelism in the form of tiles improved the
performance of CoMD by almost 3×. C++ AMP allows pro-
grammers to use LDS via its tile_static storage class
and also provides primitives for synchronization. C++ AMP
lacks performance features like the explicit unrolling of
loops and reducing code motion.

VII. HETEROGENEOUS COMPUTE: THE FUTURE OF
PROGRAMMING HETEROGENEOUS COMPUTING SYSTEMS

The emerging programming models improve programmer
productivity but lack a rich-set of powerful features such
as those found in OpenCL for performant programming.
OpenCL provides supreme performance but requires rewrit-
ing application-code which can be an engineering hurdle.
To provide a “best of both worlds” scenario, AMD is
developing Heterogeneous Compute (HC) - a simple and
powerful programming model for heterogeneous systems.

HC builds on the advantages of OpenCL and C++ AMP.
In particular, HC provides a single-source C++ development
environment for both host and kernel code, thereby eliminat-
ing the productivity concerns of OpenCL. The requirement
to rely on the compiler for data-transfers was the single
biggest reason for poor performance with C++ AMP and
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Figure 10: Productivity (Eq. 1) comparison of programming models on AMD A10-7850K and AMD Radeon R9 280X.
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Figure 11: Optimizations allowed by each programming model.

OpenACC. HC improves upon that and allows the pro-
grammer to explicitly manage data-transfers including asyn-
chronous kernel launches which help in overlapping kernel
execution with data-transfers, resulting in further speedup.
The programmer is also able to directly use raw pointers to
data in kernel-code without the need for wrapping them in
a CL::Buffer or array/array_view like in OpenCL
and C++ AMP, respectively. HC supports platform atomics
for global synchronization, offline kernel compilation and
advanced C++ language features like virtual functions and
abstract datatypes.

VIII. RELATED WORK

Several academic papers have been written to compare
OpenACC and the traditional GPU programming models.
Karlin et al. compare several traditional and emerging par-
allel programming models using the LULESH proxy appli-
cation [11]. They note that the emerging programming mod-
els offer improved productivity and performance-portability.
Hoshino et al. compare CUDA and OpenACC using several
micro-benchmarks and one computational fluid dynamics
(CFD) application [18]. Their experiments reveal several
shortcomings of OpenACC which inhibit the optimal use
of GPU resources. In particular, they note that the inability
to use local data store (LDS) on the GPU can serverly limit
performance. Herdman et al. compare OpenACC with both
OpenCL and CUDA from the perspective of accelerating
the CloverLeaf mini-application [19]. They illustrate that
OpenACC vastly improves programmer-productivity and
provides better performance than albeit unoptimized CUDA
and OpenCL implementations.

Wang et al. studied the performance portability of Ope-
nACC on discrete GPUs and many-core processors [20].

This work concluded that the portability of OpenACC is
related to the arithmetic intensity in the application and
there exists a performance gap by executing the same code
on different architectures. Ghosh et al. compared different
OpenACC implementations from different vendors [21].

Previous academic research has used OpenACC to accel-
erate a plethora of applications. Wienke et al. were among
the first to evaluate the programmability and productivity of
OpenACC using a set of real-world applications [22]. The
authors noted that though OpenACC improves productivity,
it achieves sub-optimal performance. Hart et al. present their
experience in porting and scaling OpenACC applications
on GPU-accelerated supercomputers [23]. Levesque et al.
implement the S3D proxy application using OpenACC [24].

Not many works have explored the use of C++ AMP
to accelerate GPU applications. One previous research sped
up micromagnetic simulations using C++ AMP [25]. There
have also been concerted efforts to develop compiler frame-
works that can accelerate C++ applications on GPUs. Barik
et al. present the Concord compiler which enables the effi-
cient mapping of irregular C++ applications on GPUs [26]

As noted above, there does not exist previous research
which compares and contrasts the different programming
models using more than one real-world application. We
believe that using just one application may result in a
biased evaluation of a programming model. On the other
hand, our research uses four different proxy applications
and are among the first to comprehensively use and evaluate
C++ AMP for accelerating GPU applications.

IX. CONCLUSIONS

Programming models like OpenCL and CUDA have con-
siderably ameliorated the process of using GPUs for general-
purpose computation. However, these programming models
present a large engineering hurdle due to their prerequisite
of rewriting existing CPU applications. Moreover, the result-
ing accelerated application does not manifest performance
portability. Emerging programming models like C++ AMP



and OpenACC hold the promise of mitigating the challenges
of GPU programming by making use of advanced language
features like pragmas and lambda functions. Both C++ AMP
and OpenACC rely on compilers to generate low-level code,
thereby offering improved productivity and portability from
an application standpoint.

In this paper, we present the comparative study of a tradi-
tional programming model like OpenCL and two emerging
programming models, i.e., OpenACC and C++ AMP. To
the best of our knowledge, we are the first to compare
C++ AMP with other GPU programming models. Our eval-
uations encompass the studies on performance, productivity
and ease of optimizations across various programming mod-
els using four diverse proxy applications on two different
architectures, a discrete GPU and an Accelerated Processing
Unit (APU). Our experiments illustrate that the emerging
programming models greatly improve productivity and also
match performance of OpenCL on an APU. However, on
a discrete GPU, OpenCL performs substantially better than
both OpenACC and C++ AMP because their compilers do
not optimally manage the data-transfers required on the
discrete GPU. Amongst the two emerging programming
models, C++ AMP looks more promising than OpenACC
in all three of our evaluation criteria.
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